Generalized Linear Model Biplots
Summary
1. A regression biplot can still be made if a nonlinear transformation of the response variable is performed: the effect is that the tic marks on the biplot axes are not at equal intervals, that is, the calibration is nonlinear.
2. Generalized linear models generalize linear regression to include different relationships between the conditional mean of the response variable and the explanatory variables as well as different distributions for the response variable. In each generalized linear model the conditional mean, transformed by the link function, is modelled as a linear function of the explanatory variables.
3. Examples of generalized linear models are Poisson regression (for count data), where the link function is the logarithm and the assumed distribution is Poisson; and logistic regression (for discrete responses), where the link function is the logit and the assumed distribution is binomial.
Biplots de regresiones
Resumen Capítulo 3
1. Podemos construir un biplot de regresiones también a partir de transformaciones no lineales de las variables respuesta: en consecuencia las marcas de los ejes del biplot no estarán a intervalos iguales, debido a que la calibración no es lineal.
2. Los modelos lineales generalizados permiten incluir distintos tipos de relaciones entre las medias condicionales de las variables respuesta y las variables explicativas, así como considerar diferentes distribuciones de la variable respuesta. En cada modelo lineal generalizado, obtenemos las medias condicionales que transformamos mediante funciones de enlace, como funciones lineales de las variables explicativas.
3. Son ejemplos de modelos lineales generalizados la regresión de Poisson (para datos de contaje), en las que la función de enlace es la función logaritmo y suponemos una distribución de Poisson para la variable respuesta, y la regression logística (para respuestas discretas), donde la función de enlace es la función logit, y suponemos distribuciones binomiales para la variable respuesta.