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PREFACE 

In almost every area of research where numerical data are collected, databases
and spreadsheets are being filled with tables of numbers and these data are being
analyzed at various levels of statistical sophistication. Sometimes simple summary
methods are used, such as calculating means and standard deviations of quanti-
tative variables, or correlation coefficients between them, or counting category
frequencies of discrete variables or frequencies in cross-tabulations. At the other
end of the spectrum, advanced statistical modelling is performed, which de-
pends on the researcher’s preconceived ideas or hypotheses about the data, or
often the analytical techniques that happen to be in the researcher’s available
software packages. These approaches, be they simple or advanced, generally con-
vert the table of data into other numbers in an attempt to condense a lot of nu-
merical data into a more palatable form, so that the substantive nature of the in-
formation can be understood and communicated. In the process, information is
necessarily lost, but it is tacitly assumed that such information is of little or no
relevance. 

Graphical methods for understanding and interpreting data are another form of
statistical data analysis; for example, a histogram of a quantitative variable or a bar
chart of the categories of a discrete variable. These are usually much more in-
formative than their corresponding numerical summaries—for a pair of quanti-
tative variables, for example, a correlation is a very coarse summary of the data
content, whereas a simple scatterplot of one variable against the other tells the
whole story about the data. However, graphical representations appear to be lim-
ited in their ability to display all the data in large tables at the same time, where
many variables are interacting with one another.

This book deals with an approach to statistical graphics for large tables of data
which is intended to pack as much of the data content as possible into an easily
digestible display. This methodology, called the biplot, is a generalization of the
scatterplot of two variables to the case of many variables. While a simple scatter-
plot of two variables has two perpendicular axes, conventionally dubbed the hor-
izontal x-axis and vertical y-axis, biplots have as many axes as there are variables,
and these can take any orientation in the display (see Exhibit 0.1). In a scatter-
plot the cases, represented by points, can be projected perpendicularly onto the
axes to read off their values on the two variables, and similarly in a biplot the cases

Communicating 
and understanding data
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The biplot: a scatterplot
of many variables
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can be projected perpendicularly onto all of the axes to read off their values on
all the variables, as shown in Exhibit 0.1. But, whereas in a scatterplot the values
of the variables can be read off exactly, this is generally impossible in a biplot,
where they will be represented only approximately. In fact, the biplot display is in
a space of reduced dimensionality, usually two-dimensional, compared to the true di-
mensionality of the data. The biplot capitalizes on correlations between variables
in reducing the dimensionality—for example, variables x and y in the scatterplot
of Exhibit 0.1 appear to have high positive correlation and would be represented
in a biplot in approximately the same orientation, like x1 and x2 in the biplot of
Exhibit 0.1, where projections of the points onto these two axes would give a sim-
ilar lining-up of the data values. On the other hand, the observation that variables
x3 and x5 point in opposite directions probably indicates a high negative correla-
tion. The analytical part of the biplot is then to find what the configuration of
points and the orientations of the axes should be in this reduced space in order
to approximate the data as closely as possible.

This book fills in all the details, both theoretical and practical, about this highly
useful idea in data visualization and answers the following questions:

• How are the case points positioned in the display?
• How are the different directions of the variable axes determined?
• In what sense is the biplot an optimal representation of the data and what part

(and how much) of the data is not displayed?
• How is the biplot interpreted?

Furthermore, these questions are answered for a variety of data types: quantitative
data on interval and ratio scales, count data, frequency data, zero-one data and
multi-category discrete data. It is the distinction between these various data types
that defines most chapters of the book.

Exhibit 0.1:
A simple scatterplot of two

variables, and a biplot of
many variables. Green dots
represent “cases” and axes

represent “variables”,
labelled in brown
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As in my book Correspondence Analysis in Practice (2nd edition), this book is divid-
ed into short chapters for ease of self-learning or for teaching. It is written with a
didactic purpose and is aimed at the widest possible audience in all research areas
where data are collected in tabular form.

After an introduction to the basic idea of biplots in Chapter 1, Chapters 2 and 3
treat the situation when there is an existing scatterplot of cases on axes defined
by a pair of “explanatory” variables, onto which other variables, regarded as “re-
sponses” are added based on regression or generalized linear models. Here read-
ers will find what is perhaps the most illuminating property of biplots, namely that
an arrow representing a variable is actually indicating a regression plane and
points in the direction of steepest ascent on that plane, with its contours, or iso-
lines, at right-angles to this direction. 

Chapter 4 treats the positioning of points in a display by multidimensional scal-
ing (MDS), introducing the concept of a space in which the points lie according
to a measure of their interpoint distances. Variables are then added to the con-
figuration of points using the regression step explained before.

Chapter 5 is a more technical chapter in which the fundamental result underly-
ing the theory and computation of biplots is explained: the singular value decom-
position, or SVD. This decomposition provides the coordinates of the points and
vectors in a biplot with respect to dimensions that are ordered from the most
to the least important, so that we can select the reduced-dimensional space of
our choice (usually two- or three-dimensional) that retains the major part of the
original data.

Chapter 6 explains and illustrates the simplest version of the biplot of a cases-by-
variables matrix in the context of principal component analysis (PCA), where the
variables are measured on what are considered to be interval scales. Here the is-
sue of biplot scaling is treated for the first time.

Chapter 7 deals with the lesser-known topic of log-ratio analysis (LRA), which de-
serves much more attention by data analysts. The variables in this case are all
measured on the same scale, which is a positive, multiplicative scale, also called a
ratio scale. All pairs of ratios within rows and within columns are of interest, on a
logarithmic scale. The LRA biplot shows the rows and the columns as points, but
it is really the vectors connecting pairs of rows or pairs of columns that are inter-
preted, since these link vectors depict the log-ratios. 

Chapter 8 treats biplots in correspondence analysis (CA), which competes with
log-ratio analysis as a method for analyzing data on a common ratio scale, espe-

Summary of contents
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cially count data. In contrast to LRA, CA easily handles zero values, which are
common in many research areas where count data are collected, for example lin-
guistics, archaeology and ecology. 

Chapters 9 and 10 consider biplots in the display of large sets of multivariate cat-
egorical data, typically from questionnaire surveys, using variations of CA. Here
there are two approaches: one is to consider associations between two different
sets of variables, which are cross-tabulated and then concatenated (Chapter 9),
while the other considers associations within a single set of variables (Chapter 10)
—the latter case, called multiple correspondence analysis (MCA), has become
one of the standard tools for interpreting survey data in the social sciences.

Chapter 11 focuses on discriminant analysis (DA) of grouped data, where the bi-
plot displays group differences rather than differences between individual cases.
Each group is represented by its mean point, or centroid, and it is these centroids
that are optimally displayed in the biplot, along with the variables that contribute
to their separation.

Chapter 12 is a variant of the dimension-reduction theme where the optimal re-
duced space is obtained subject to constraints on the solution in terms of addi-
tional explanatory variables. This idea has applications in all the versions of the
biplot treated in the book: MDS, PCA, LRA, CA, MCA and DA. In the PCA con-
text this constrained form is known as redundancy analysis (RDA) and in the CA
context as canonical correspondence analysis (CCA).

Throughout the book there are illustrations of biplots in many different research
contexts. It then concludes with three more detailed case studies in the bio-
medical, social and environmental sciences respectively: 

• Analysis of a large data set in cancer research based on gene-expression arrays
—using the PCA biplot and the DA biplot (or centroid biplot) to distinguish
between four cancer types (Chapter 13).

• Analysis of data on several thousand respondents in a questionnaire survey on
attitudes to working women—using CA and MCA biplots, and also constrained
biplots to study the effect of different response categories (Chapter 14).

• Analysis of morphological and diet data of a sample of fish, to identify possible
components of the diet that are related to the fish’s morphology—using the
LRA biplot with constraints (Chapter 15).

The biplots reported and discussed in the book are all computed in the open-
source R environment and the Computational Appendix explains several of these
analyses by commenting on the R code used.

Computations in the R
language
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Finally, the book concludes with a bibliography for further reading and online re-
sources, a glossary of terms, and an epilogue in which some of my personal opin-
ions are expressed about this area of statistics.

Readers will find a supporting website for this book at:

http://www.fbbva.es

http://www.multivariatestatistics.org

containing additional material such as the glossary and summaries of the material
in Spanish, and the complete script file of the R code.

This book is appropriately dedicated to Prof. Cas Troskie, former head of the De-
partment of Statistical Sciences at the University of Cape Town (UCT), South
Africa, and a maestro of theoretical and applied multivariate analysis. Cas was one
of the most influential people in my statistical career. In fact when he visited me
in Barcelona on several occasions I always introduced him as the reason behind
my decision to do statistics as a major in my initial Bachelor of Science studies at
UCT. As early as 1969, aged 33 and the youngest department head on the UCT
campus, he was encouraging students like myself to write computer programs and
put decks of punched cards into card readers linked to the university computer
and wait expectantly for printouts to emerge with the results. He had a singular
faith in principal components of a data set, which prepared me for my subsequent
studies in France on correspondence analysis. I am not alone in being affected by
his dynamic personality and sharp intelligence, since he inspired dozens of Mas-
ters and PhD theses, leaving a huge legacy to the statistical community, not only
in South Africa but worldwide. One of his theoretical papers, co-authored with
one of his PhD students, has been cited often in the electrical engineering litera-
ture and has made a significant impact in the design of MIMO (multiple input
multiple output) wireless communications systems, which will form the corner-
stone of most future wireless technologies.

This book owes its publishing to the BBVA Foundation and its Director, Prof. Rafael
Pardo. One of the visions of the Foundation is to disseminate advanced educa-
tional material in a form that is easily accessible to students and researchers world-
wide; hence this series of manuals on applicable research, attractively produced,
distributed online for free and complemented by a supporting website with addi-
tional online material. For an academic it is like a dream come true to have such
an outlet and I express my gratitude and appreciation to Prof. Pardo for including
me in this wonderful project. Thanks are also due to the Foundation’s publications
director, Cathrin Scupin, for her continuing co-operation and support throughout
the publishing process. Then there is the fantastic production team at Rubes Edi-

Dedication to Cas Troskie

Acknowledgements
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torial in Barcelona, Jaume Estruch, Núria Gibert and Imma Rullo, to whom I am
equally grateful—they are responsible for the physical aspects of this book, expert
copy-editing of the manuscript, and the design of the supporting website. Thanks
are due to the Pompeu Fabra University in Barcelona, and for partial funding by
the Spanish Ministry of Science and Technology grants MTM2008-00642 and
MTM2009-09063. Finally, there are many friends who have supported me in this
project—too many to list individually, but they know who they are!

So, if you have this book in your hands or are seeing this online, I wish you good
reading, good learning and especially good biplotting!

Michael Greenacre
Barcelona, July 2010 
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CHAPTER

Biplots—the Basic Idea

The basic idea of the biplot is very simple, and like all simple solutions to com-
plex problems it is both powerful and very useful. The biplot makes informa-
tion in a table of data become transparent, revealing the main structures in the
data in a methodical way, for example patterns of correlations between variables
or similarities between the observations. Rectangular data matrices are the “raw
material” in many research areas, existing in spreadsheets or databases. The
rows of a data matrix are usually observed sampling units such as individuals,
countries, demographic groups, locations, cases,…, and the columns are vari-
ables describing the rows, such as responses in a questionnaire, economic indi-
cators, products purchased, environmental parameters, genetic markers, …
Throughout this book several data matrices from different areas of research will
be used as illustrations of the power of the biplot to reveal the inherent struc-
ture in the data. In this initial chapter, we describe the basic geometric concepts
that form both the foundation of the biplot’s definition as well as its practical
interpretation.

Contents

Scatterplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A simple example: a matrix expressed as the product of two other matrices . . . . . . . . . . . . . . . . . . . . 16
Scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Geometric interpretation of scalar product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Calibration of biplot axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Moving into higher-dimensional spaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SUMMARY: Biplots—the Basic Idea  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A biplot is the generalization of the well-known scatterplot of observations on two
variables. Exhibit 1.1 shows data for 12 European countries in 2008 on the fol-
lowing three variables: X 1 = purchasing power per capita (expressed in euros),
X 2 = gross domestic product (GDP) per capita (indexed at 100 for all 27 coun-
tries in the European Union for 2008) and X 3 = inflation rate (percentage). Ex-
hibit 1.2 shows two scatterplots, of X 1 versus X 2 and X 3 versus X 2 respectively. At

Scatterplots

15

1



a glance we can see in the first scatterplot that X 1 and X 2 are strongly correlated,
as one would expect for these variables, whereas the second scatterplot shows the
correlation to be weaker between X 3 and X 2. In this book we will be interested in
visualizing the relationships between many variables, but let us consider for a
start how we could see the inter-relationships between all three of these vari-
ables. One way is to use three-dimensional graphics, but we still have to resort to
a planar representation of the points, as shown inside a cube in Exhibit 1.3. Two
different views of the points are shown and the first view shows the countries lin-
ing up more or less in a linear spread, as indicated by the dashed line. We can
capitalize on this by turning the cloud of points around so we look at it from a
viewpoint perpendicular to this line of spread, as shown in the second view. The
countries are now spread out more, and all that we miss in the second view is the
small deviation of each country from the dashed line. In the second view of Ex-
hibit 1.3 directions have been added, starting more or less at the middle of the
cloud of country points and pointing in the directions of the variables as given
by the sides of the cube. It is no coincidence that the two variables which were
seen to be correlated turn out pointing in similar directions, since they were
seen in the left hand scatterplot of Exhibit 1.2 to be lining up the countries in
more or less the same order. What we have done in this informal example is re-
duce the three-dimensional example to a flat two-dimensional display, trying to
lose as little of the spread of the countries in their original three-dimensional
space as possible. The rest of this book formalizes this idea and extends it to
showing clouds of points in high-dimensional spaces in a subspace of reduced di-
mensionality.

To introduce the biplot in a very simple way, consider the following equality be-
tween a 5 × 4 matrix on the left-hand side and the product of two matrices, 5 × 2
and 2 × 4 respectively:

Exhibit 1.1:
Economic data for 12

European countries in 2008.
X1 = purchasing power

per capita (expressed in
euros), X2 = gross

domestic product (GDP) per
capita (indexed at 100 for

all 27 countries in the
European Union for 2008)
and X3 = inflation rate

(percentage) 

A simple example: a matrix 
expressed as the product

of two other matrices
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COUNTRY X1 X2 X3

Be Belgium 19,200 115.2 4.5
De Denmark 20,400 120.1 3.6
Ge Germany 19,500 115.6 2.8
Gr Greece 18,800 94.3 4.2
Sp Spain 17,600 102.6 4.1
Fr France 19,600 108.0 3.2
Ir Ireland 20,800 135.4 3.1
It Italy 18,200 101.8 3.5
Lu Luxembourg 28,800 276.4 4.1
Ne Netherlands 20,400 134.0 2.2
Po Portugal 15,000 76.0 2.7
UK United Kingdom 22,600 116.2 3.6



Exhibit 1.2:
Two scatterplots constructed
from the three variables in
Exhibit 1.1
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Exhibit 1.3:
A three-dimensional

scatterplot of all three
variables in Exhibit 1.1,
seen from two points of
view. The second one is

more informative about the
relative positions of the

countries in the three-
dimensional space and axes

are shown parallel to their
respective sides of the cube
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(1.1)

To give some general names to these matrices, let us call the first matrix the tar-
get matrix, and the two matrices of the product the left matrix and the right matrix
respectively, so that expressions of the form (1.1) can be written as:

target matrix = left matrix · right matrix (1.2)

Notice that for the matrix product to be valid, the number of columns of the left
matrix must be equal to the number of rows of the right matrix. The rules of ma-
trix multiplication are that the elements of a row of the left matrix are multiplied
by the corresponding elements of a column of the right matrix, and then added,
producing that particular row–column element of the target matrix. For example,
the first value of the target matrix, 8, is equal to 2 × 3 + 2 × 1; and the value −6 in
row 1, column 4, is calculated from the first row of the left matrix and the fourth
column of the right matrix, as 2 × (−2) + 2 × (−1). Such “sums of cross-products”
are called scalar products, and are the basis of the geometry of the biplot.

For any two vectors aT = [a 1 a2 … am] and bT = [b 1 b2 … bm], with m elements each,
the scalar product between a and b is

aTb = a 1b 1 + a 2b2 + ··· + a mbm (1.3)

The notation T stands for “transpose of”, turning rows into columns and vice ver-
sa. Notice that the convention is to write vectors as columns, so that a row vector
is defined as the transpose of a column vector. 

In the case of (1.1) each row vector of the left matrix has two elements and each
column vector of the right matrix has two elements, so each of these row–column
pairs has a scalar product equal to the corresponding element of the target ma-
trix. We write (1.1) as

(1.4)

Scalar product
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where X consists of a set of row vectors x i
T, i = 1,…,5 (each with two elements),

and YT consists of a set of column vectors yj , j = 1,…,4 (also with two elements
each). The right matrix is written as a transpose so that we have two matrices, X
and Y, whose rows both contain the vectors used in the scalar product calculations:

(1.5)

There is a specific geometric interpretation of the scalar product which gives its
usefulness as a method of data visualization. Using the simple example above, let
us plot the rows of X and the rows of Y as points in a Euclidean space, which is
two-dimensional in this case:

In Exhibit 1.4 one of the sets of points, in this case the four points of the right ma-
trix, are drawn as vectors connected to the origin. Each of these vectors defines a
biplot axis onto which the other set of points can be projected. By projection of a
point onto a vector we mean dropping the point perpendicularly onto the vector
as shown in Exhibit 1.5. For example, the projection of x1 onto the vector y1 can
be calculated as having length 2.530 (using simple trigonometry, the length of x1

Geometric interpretation
of scalar product

Exhibit 1.4:
The five points x i

of the left matrix and four
points yj of the right matrix
in decomposition (1.1) (the
latter points are shown as

vectors connected to the
origin). The scalar product
between the i-th row point

and the j-th column 
point gives the (i,j)-th 

value si j of the target
matrix in (1.1)
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is 2.828, the square root of 8, and the angle between x1 and y1 is 26.57º, so the pro-
jection of x1 onto y1 has length 2.828 × cos(26.57º) = 2.828 × 0.8944 = 2.530). Now
if this projected length is multiplied by the length of y1 (equal to 3.162, the square
root of 10), the result is 2.530 × 3.162 = 8.00. This result is nothing else but the
scalar product between x1 and y1: (2 × 3) + (2 × 1) = 8. So we have illustrated
the result, shown in Exhibit 1.5, that the scalar product between two vectors is the
length of the projection of the first vector onto the second multiplied by the length
of the second one (or vice versa):

xTy = �x� · �y� · cos(θ ) (1.6)

All biplots have the above property, in fact the property is inherent to the defini-
tion of the biplot. Two sets of points are graphed in a joint plot, according to co-
ordinates provided by the left and right matrices of the decomposition of a target
matrix. Either set can be chosen as a set of biplot axes, and often this set is con-
nected by vectors to the origin of the biplot to indicate the choice. Let us call
these the biplot vectors as opposed to the other set of biplot points. The biplot points
can then be projected onto the biplot axes, and their projections, multiplied by
the length of the corresponding biplot vectors, give the scalar products which are
equal to the elements of the target matrix.

The practical value of the biplot property of representing data by scalar products
is only truly apparent if one thinks of the biplot axes as being calibrated. This is the

Exhibit 1.5:
Example of two points x
and y whose vectors
subtend an angle of θ with
respect to the origin. The
scalar product between the
points is the length of the
projection of x onto y,
�x� cos(θ), multiplied
by the length of y, �y�.
The result is identical if y
is projected onto x and the
projected length, 
�y� cos(θ), is
multiplied by the length of
x, �x�. If θ is an obtuse
angle (>90º), then
cos(θ) is negative and
the projection has a
negative sign, hence the
scalar product is negative

Calibration of biplot axes

BIPLOTS—THE BASIC IDEA

21

y

origin ||x cos(  )θ||
θ

x

||x
||

||y||



placing of tic marks on the biplot axes indicating a scale for reading off the val-
ues in the target matrix by simply projecting the biplot points onto the biplot
axes. For example, consider again the biplot axis in Exhibit 1.4 defined by the bi-
plot vector y1, and now consider the projections of all the biplot points x1, …, x5

onto this axis. These five projections will all be multiplied by the same value, the
length of y1, to obtain the five values in the first column of the target matrix.
This means that the five projected values are directly proportional to the target
values, so we can calibrate the biplot axis with a scale that depends on the length
of y1, after which we no longer have to perform the multiplication by the length of
y1. To know what the length of one unit is along the biplot axis, consider again
the way we obtain a particular target value in row i from the corresponding scalar
product:

In order to know what one unit is on the biplot axis, we need to invert this for-
mula for a target value of 1:

length of projection of one unit = 1 / length of biplot vector (1.7)

This means that the inverse of the lengths of the biplot vectors give us the
lengths of one unit on the biplot axis (see Exhibit 1.6)—if a biplot vector is
short, the intervals between units on that biplot axis are large (so values change
slowly), and if the biplot vector is long, the intervals between units on that biplot
axis are short (so values change fast). For example, the length of y1 is the square
root of 10, 3.162. Hence, unit tic marks on the biplot axis through y1 are a dis-
tance of 1/3.162 = 0.3162 apart.

Each vector yj defines a biplot axis that can be calibrated in the same way. Al-
though we will generally not show calibrations along the axes, the fact that axes
can be calibrated gives the raison d’être of the biplot’s interpretation. If the columns
of the target matrix are variables and the rows are cases, the biplot representa-
tion will mean that variables can be depicted as axes pointing in a direction such
that the values for the cases on that variable are obtained by projecting the cas-
es onto the variables. The actual values of that variable are not as important as
being able to see how the cases line up along that variable. And if two biplot axes
lie in the same orientation we shall be able to deduce that the cases have the
same relative positions along both variables, which translates into high inter-vari-
able correlation.
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In this introductory example of how scalar products and projections give values
of a target matrix, the left and right matrices of the decomposition provide two-
dimensional coordinates, easily visualized in the planar display of Exhibits 1.4 and
1.6. If these matrices were three-dimensional (X and Y with three columns), we
could still see what was happening if we could view the points and vectors in three-
dimensional space. Calibration and projection are performed in exactly the same
way. Of course, for a given data matrix in practice, we will not be able to find a de-
composition into a product of matrices with only two or three dimensions: in fact,
the number of dimensions needed is equal to the rank of the target matrix. For
these higher-dimensional situations we shall need methods for reducing the di-
mensionality of the target matrix—this theme will be introduced in Chapter 5
and used extensively in the rest of the book.

1. Scatterplots typically plot observations on two variables with respect to rectan-
gular coordinate axes. Three-dimensional scatterplots showing observations
on three variables are possible using special software and a two-dimensional
view of these three variables can be optimized to show a maximum amount of
the variance (i.e., dispersion) of the plotted points. The biplot generalizes
this idea to many variables being observed and viewed simultaneously in an
optimal fashion.

2. Biplots are defined as the decomposition of a target matrix into the product of
two matrices, called left and right matrices: S = X Y T. Elements in the target ma-

Exhibit 1.6:
Calibrating a biplot axis
through vector y1 , shown
as dashed line. The distance
between units on this axis is
the inverse of the length of
y1 , 0.3162, and allows
placing values on the axis
(shown in black). Points
projected perpendicularly
onto the biplot axis give
values on the calibrated
scale equal to the values in
the first column of the
target matrix (corresponding
to y1 , the first biplot
vector). Thus we can read
off the target values of 8, 5,
−2, 2 and 4 for points x1 ,
…, x5 , respectively —see
first column of target matrix
in (1.1)

Moving into 
higher-dimensional
spaces

SUMMARY:
Biplots—the Basic Idea
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trix S are equal to scalar products between corresponding pairs of vectors in the
rows of X and Y respectively.

3. The geometry of scalar products provides the following rule for interpreting the
biplot graphically. The vectors in the left and right matrices provide two sets of
points, one of which can be considered as a set of biplot vectors defining biplot
axes, and the other as a set of biplot points. Points can be projected perpendicu-
larly onto biplot axes to recover the values in the target matrix, since the lengths
of these projections multiplied by the lengths of the corresponding biplot vec-
tors are equal to the scalar products, and thus in turn equal to the target values.

4. Calibration of the biplot axes is possible, which means that values of the target
matrix can be read off directly from the projections, just as in scatterplots
where points are projected onto the axes to read their values.

5. The “bi” in biplot refers to the fact that two sets of points (i.e., the rows and
columns of the target matrix) are visualized by scalar products, not the fact
that the display is usually two-dimensional. The biplot and its geometry hold
for spaces of any dimensionality, but we shall need dimension-reducing techniques
in practice when data matrices have high inherent dimensionality and a rep-
resentation is required with respect to a low number of dimensions, usually
two or three.
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CHAPTER

Regression Biplots

Biplots rely on the decomposition of a target matrix into the product of two ma-
trices. A common situation in statistics where we have such a decomposition is in
regression analysis: Ŷ = XB, where X is a set of explanatory variables, B contains
estimated regression coefficients and the values in Ŷ are the estimated values of
one or more response variables. Thus Ŷ serves as the target matrix and X and B
serve as the left and right matrices (actually BT, since the right matrix of the de-
composition is written in transposed form—see (1.4)). The coefficients in B are
estimated to minimize the sum-of-squared errors between the original response
variables in Y and the estimated values in Ŷ. This context provides an excellent
introduction to biplots as an approximation to higher-dimensional data.
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Throughout this book we shall be using a small data set which serves as an excel-
lent example of several biplot methods. The context is in marine biology and the
data consist of two sets of variables observed at the same locations on the sea-bed:
the first is a set of biological variables, the counts of five groups of species, and
the second is a set of four environmental variables. The data set, called “bioenv”,
is shown in Exhibit 2.1. The species groups are abbreviated as “a” to “e”. The en-
vironmental variables are “pollution”, a composite index of pollution combining
measurements of heavy metal concentrations and hydrocarbons; “depth”, the
depth in metres of the sea-bed where the sample was taken; “temperature”, the
temperature of the water at the sampling point; and “sediment”, a classification

Data set “bioenv” 
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of the substrate of the sample into one of three sediment categories. Initially, we
are going to consider the biological variables and only two of the environmental
variables, “pollution” and “depth”.

To start off let us consider species “d” as a response variable, denoted by d, being
modelled as a linear function of two explanatory variables, “pollution” and
“depth”, denoting these two variables by y and x respectively. Simple linear re-
gression leads to the following estimates of the response variable:

Exhibit 2.1:
Typical set of multivariate

biological and
environmental data: the

species data are counts,
while the environmental

data are continuous
measurements, each

variable on a different
scale; the last variable is a

categorical variable
classifying the substrate as

mainly  C (=clay/silt), 
S (=sand) or  

G (=gravel/stone)

Simple linear regression
on two explanatory

variables 
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SITE NO. SPECIES COUNTS ENVIRONMENTAL VARIABLES

a b c d e Pollution Depth Temperature Sediment

s1 0 2 9 14 2 4.8 72 3.5 S

s2 26 4 13 11 0 2.8 75 2.5 C

s3 0 10 9 8 0 5.4 59 2.7 C

s4 0 0 15 3 0 8.2 64 2.9 S

s5 13 5 3 10 7 3.9 61 3.1 C

s6 31 21 13 16 5 2.6 94 3.5 G

s7 9 6 0 11 2 4.6 53 2.9 S

s8 2 0 0 0 1 5.1 61 3.3 C

s9 17 7 10 14 6 3.9 68 3.4 C

s10 0 5 26 9 0 10.0 69 3.0 S

s11 0 8 8 6 7 6.5 57 3.3 C

s12 14 11 13 15 0 3.8 84 3.1 S

s13 0 0 19 0 6 9.4 53 3.0 S

s14 13 0 0 9 0 4.7 83 2.5 C

s15 4 0 10 12 0 6.7 100 2.8 C

s16 42 20 0 3 6 2.8 84 3.0 G

s17 4 0 0 0 0 6.4 96 3.1 C

s18 21 15 33 20 0 4.4 74 2.8 G

s19 2 5 12 16 3 3.1 79 3.6 S

s20 0 10 14 9 0 5.6 73 3.0 S

s21 8 0 0 4 6 4.3 59 3.4 C

s22 35 10 0 9 17 1.9 54 2.8 S

s23 6 7 1 17 10 2.4 95 2.9 G

s24 18 12 20 7 0 4.3 64 3.0 C

s25 32 26 0 23 0 2.0 97 3.0 G

s26 32 21 0 10 2 2.5 78 3.4 S

s27 24 17 0 25 6 2.1 85 3.0 G

s28 16 3 12 20 2 3.4 92 3.3 G

s29 11 0 7 8 0 6.0 51 3.0 S

s30 24 37 5 18 1 1.9 99 2.9 G



d̂ = 6.135 − 1.388y + 0.148x         R 2 = 0.442 (2.1)

From a statistical inference point of view, both y and x are significant at the 5%
level—their p-values based on the classical t-tests are 0.008 and 0.035 respective-
ly.1 The regression coefficients on the explanatory variables have the following in-
terpretation: for every unit increase of pollution (variable y), abundance of
species d decreases by 1.388 on average; while for every unit increase of depth
(variable x), abundance of d increases by 0.148 on average. The amount of vari-
ance in d explained by the two variables is 44.2%, which means that the sum of
squared errors across the 30 observations, Σi (d i − d̂ i )

2, which is minimized by the
linear regression, is 55.8% of the total variance of d. 

The estimated regression coefficients in (2.1), i.e. the “slope” coefficients −1.388
and 0.148, have scales that depend on the scale of d and the scale of the two ex-
planatory variables y and x, and so are difficult to compare with each other. To re-
move the effect of scale, all variables should be expressed in a comparable scale-
free way. The most common way of doing this is to standardize all variables by
centring them with respect to their respective means and dividing them by their re-
spective standard deviations. We denote the standardized values of the three vari-
ables (their “z-scores”) as d *, y* and x* respectively, each having mean zero and
variance 1 thanks to the standardization. The estimated regression relationship
(2.1), including what are called the standardized regression coefficients, then becomes:2

d̂ * = −0.446y* + 0.347x* R 2 = 0.442 (2.2)

Notice that there is no intercept, since all variables have mean zero. The regression
coefficients now quantify the change in the standardized value of the response vari-
able estimated from an increase of one standardized unit (i.e., one standard devi-
ation) of each explanatory variable. The two coefficients can be compared and it
seems that pollution has a bigger (negative) effect on species d than the (positive)
effect of depth. Exhibit 2.2 shows schematically the difference between the regres-
sion plane for the unstandardized and standardized variables respectively.

The standardized regression coefficients in (2.2) have an interesting geometric
interpretation. They are the partial derivatives of d̂ * with respect to the two vari-
ables y* and x*, which are written mathematically as:

Standardized regression
coefficients

Gradient of 
the regression plane
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1. All calculations can be followed and repeated using the R code given in the Computational Appendix.
2. Since some regression programs do not automatically give the standardized regression coefficients, these can

be easily calculated from the original ones as follows: standardized coefficient = original coefficient ×(standard
deviation of explanatory variable / standard deviation of response variable). See the Computational Ap-
pendix for examples of this calculation.



As a vector [−0.446 0.347]T these two numbers indicate the gradient of the plane
(2.2), that is the direction of steepest ascent up the plane in the right-hand image
of Exhibit 2.2.

The complete geometry of the regression can then be drawn in the two-dimen-
sional space of the explanatory variables, as shown in Exhibit 2.3. This is the
scatterplot of the two variables y* and x*, whose values are given in the table
alongside the figure. The brown arrow is the gradient vector, with coordinates 
−0.446 on the y*-axis and 0.347 on the x*-axis. So here we are looking at the
plane on the right of Exhibit 2.2 from the top, down onto the y*−x* plane. The
arrow indicates the gradient vector, pointing in the direction of steepest ascent
of the plane, which is all we need to know to understand the orientation of the
plane.

Now the contours of the regression plane, i.e., the lines of constant “height”, by
which we mean constant values of d̂ *, form lines perpendicular to the gradient
vector, just like in Exhibit 2.3. From the steepness of the plane (which we know
from the gradient vector) it seems intuitively obvious that we can work out the
heights of these contours on the standardized scale of d and then transform these
back to d’s original scale—in Exhibit 2.3 we show the contours for 0, 5, 10, 15 and
20. That is, we can calibrate the biplot axis for species d (we will explain exactly
how to calibrate this axis below). Hence, to obtain the estimates of d for any giv-
en point y* and x* we simply need to see which contour line it is on, that is proj-
ect it perpendicularly onto biplot axis d.

Exhibit 2.2:
Schematic geometric

representation in three-
dimensions of the

regression plane for the
original data (on left) and

standardized data (on
right), where the response

variable is the vertical
dimension, and the two

explanatory variables are on
the “floor”, as it were

(imagine that we are looking
down towards the corner of

a room). The plane on the
right goes through the origin

of the three axes

Contours of
the regression plane
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Seeing which contour line corresponds to any given sample point is thus equiva-
lent to projecting the point perpendicularly onto the biplot axis and reading off
the value. Exhibit 2.4 shows an example of estimating the value of d for the fourth
sample, giving a value of 4.06. This is not equal to the observed value of 3 (see
original data on the left of Exhibit 2.4), but we do not expect it to be, since the
variance explained by the regression of d on y and x is 44.2%. If we projected all
the sample points onto the d-axis, and recovered the original values exactly, this
would mean the regression plane passes exactly through the data points and the
explained variance would be 100%. We are not in this situation, unfortunately,
since our estimated values explain only 44.2% of the variance of d, in other words
55.8% of the variance is due to differences between the estimates and the ob-
served values.

All this sounds exactly like what we described in Chapter 1, particularly concern-
ing Exhibit 1.3, and indeed it is, because the regression equation (2.2) is nothing
else but the scalar product between the gradient vector (indicating the biplot
axis) and a general point in the x*−y* plane. Hence, this equation for estimating
the response, given values of the two predictors as a biplot point, can be convert-
ed into the scalar product between this biplot point and the biplot gradient vec-
tor (the regression coefficients). This is equivalent to projecting the biplot point
onto the biplot axis defined by the gradient vector, which is calibrated in units of
the response variable. 

Exhibit 2.3:
The regression plane for
species d is shown by its
gradient vector in the
x*−y*space of the
explanatory variables.
Contour lines (or isolines)
are drawn at selected
heights
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In Chapter 1 we showed how to calibrate a biplot axis—one unit is inversely pro-
portional to the length of the corresponding biplot vector (see equation (1.7)).
In regression biplots the situation is the same, except the unit is a standardized
unit and we prefer to calibrate according to the original scale of the variable. To
express the regression coefficients on the original scale of d in the present case,
we would simply multiply them by the standard deviation of d, which is 6.67, mak-
ing them 6.67 × −0.446 and 6.67 × 0.347 respectively. Then the calculation is as
before, using the rescaled regression coefficients:

In general, the calculation is:

(2.3)

Exhibit 2.4:
Projection of sample 4 onto

the biplot axis, showing
sample 4’s original values

in the table on the left and
standardized values of the

predictors on the right. The
predicted value is 4.06,

compared to the observed
value of 3, hence an error of

1.06. The sum of squared
errors for the 30 samples

accounts for 55.8% of the
variance of d, while 

the explained variance 
(R 2) is 44.2%

Calibrating a regression
biplot axis
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that is, the unit length of the standardized variable divided by the (unstandard-
ized) variable’s standard deviation. As far as the centre of the biplot is concerned,
the variable’s average is at the origin—in the present example the origin should
be at the value 10.9, the average of d. We know that values are increasing in the
direction of the biplot vector (towards bottom right in Exhibits 2.3 and 2.4), and
also have computed the length of one unit on the biplot axis, so we have all we
need to calibrate the axis. In the exhibits we calibrated at every 5 units, so the dis-
tance interval along the axis between consecutive values is 5 × 0.265 = 1.325.

Each of the five species in Exhibit 2.1 can be linearly regressed on the two pre-
dictors “pollution” (y) and “depth” (x), using standardized scales for all variables,
to obtain standardized regression coefficients that can be used as biplot vectors.
Exhibit 2.5 shows the five regression analyses in one biplot. Each biplot vector
points in the direction of steepest ascent of the regression plane. The larger the
regression coefficients, the longer are the arrows and thus the steeper is the re-
gression plane. If two biplot vectors are pointing in the same direction (for ex-
ample, b and d) their relationships with the explanatory variables are similar.
Species c clearly has an opposite relationship to the others, in that its regression

Regression biplots 
with several responses

Exhibit 2.5:
Regression biplot of five
response variables, species
a to e, in the space of the
two standardized
explanatory variables. The
overall explained variance
for the five regressions is
41.5%, which is the
measure of fit of the biplot
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coefficient with pollution is positive while all the others are negative. The biplot
axes through the biplot vectors can each be calibrated in the same way as ex-
plained above for response variable d, and the projections of the 30 samples
(numbered in Exhibit 2.5) onto a particular biplot axis give the estimated values
for that response. How close these estimated values are to the observed ones is
measured by the R 2 for each regression: the percentages of explained variance,
respectively for a to e, are 52.9%, 39.1%, 21.8%, 44.2% and 23.5%, with an over-
all R 2 of 41.5%. This overall value measures the quality of the regression biplot to
explain all five response variables.

Finally, to show how regression biplots fit the general definition of the biplot giv-
en in Chapter 1, we write the estimation equation (2.4) for all five response vari-
ables in a matrix decomposition formulation as follows:

(2.4)

that is,               Ŝ = UBT

where the target matrix is the 30 × 5 matrix of estimated response values (stan-
dardized), the left matrix of the decomposition is the 30 × 2 matrix of standard-
ized explanatory variables and the right matrix contains the standardized regres-
sion coefficients. The target matrix is an estimation Ŝ of the observed (stan -
dardized) responses S = [a* b* c* d* e*], which can be written as: S ≈ Ŝ, which
reads “S is approximated by Ŝ”. In this case the sense of the approximation is that
of least-squares regression, where U = [y* x*] is the fixed matrix of explanatory
variables and the regression coefficients BT are calculated in the usual way by least
squares as follows:

BT = (UTU)−1UTS (2.5)

The complete process of the regression biplot can thus be summarized theoreti-
cally as follows:

S ≈ Ŝ = U(UTU)−1UTS (2.6) 

The matrix U(UTU)−1UT is called the projection matrix of S onto the explanatory
variables in U. In fact, we can write S as the following sum:

S = Ŝ + (S − Ŝ)
S = (U(UTU)−1UT)S + (I − U(UTU)−1UT)S (2.7)
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where the first term is the projection of S onto the space of the explanatory vari-
ables, and the second term is the projection of S onto the space orthogonal to
(uncorrelated with) the explanatory variables. (I denotes the identity matrix, a di-
agonal matrix with 1’s down the diagonal.) The part of S that is explicable by the
explanatory variables U can be biplotted according to (2.6), as we have done in
Exhibit 2.5, using U as the left matrix and the standardized regression coefficients
in (UTU)−1UTS as the right matrix.

Notice that in these initial chapters we consider the case of only two explanatory
variables, which conveniently gives a biplot in two dimensions. If we used the
three variables “pollution”, “depth” and “temperature” we would need three di-
mensions to show the variables and the regression relationships. We should also
stress again that the “bi” in biplot does not refer to the bidimensional nature of
the figures, but the fact that we depict rows and columns together. The case of
three or more explanatory variables will be dealt with in later chapters (from
Chapter 5 onwards).

1. A regression biplot shows the cases (usually rows) and a set of response variables
(usually columns) of a data matrix in the same joint representation, which is
constructed using a set of explanatory variables, or predictors. Cases are shown
as biplot points with respect to standardized values of the predictors and vari-
ables are shown as biplot vectors, each according to the standardized regres-
sion coefficients of its regression on the predictors.

2. The biplot vectors represent the separate linear regressions and define biplot
axes onto which the case points can be projected. The axes can be calibrated
so that predicted values from the regressions can be read off.

3. The quality of the regression biplot is measured by the percentages of variance
explained by the individual regressions that build the biplot.

SUMMARY:
Regression Biplots
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CHAPTER

Generalized Linear Model Biplots

Generalized linear models are a wide class of regression-type models for different
types of data and analytical objectives. Linear regression is the simplest form of a
generalized linear model, where the mean of the response variable, given values
of the predictors, is a linear function of the predictors and the distribution of the
data around the mean is normal. The regression coefficients are estimated by fit-
ting lines or planes (or “hyperplanes” for more than two explanatory variables)
by least squares to the data points. Then, as we saw in Chapter 2, estimated mean
values of response variables can be obtained by projecting case points onto vari-
able vectors. This idea is developed and extended in two ways to generalized lin-
ear models: first, the mean of the response can be transformed nonlinearly, and
it is this transformed mean that is modelled as a linear function of the predictors;
and second, the probability distribution of the response variable around the
mean function can be different from the normal distribution. In this chapter we
first discuss data transformations and then give two examples of generalized lin-
ear model biplots: Poisson regression biplots and logistic regression biplots.
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As an intermediate step towards considering generalized linear models (GLM), let us
suppose that we wished to transform the response variables and then perform the
regression analysis. There could be many reasons for this, such as making the data
more symmetrically distributed, or reducing the effect of outliers. Power trans-
formations are commonly used on data such as the species counts in Exhibit 2.1
—these can be either a square root or double square root (i.e., fourth root) trans-
formation, or the Box-Cox family of power transformations which includes the
logarithmic transformation. For example, considering species d again, let us con-
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sider the fourth root transformation d0 = d ¼. Fitting this transformed response to
the two standardized predictors y* (“pollution”) and x* (“depth”) as before leads
to the following equation for predicting d0: 

d̂ 0 = 1.642 − 0.288y* + 0.060x* R 2 = 0.276 (3.1)

Notice first that we have not centred the transformed data, hence the presence of
the constant in the regression—the constant is equal to the mean of d0 because
the predictor variables are centred. Also, because the power transformation tends
to homogenize the variances (i.e., make them more similar in value), we have not
standardized d0 either. If some transformed variables have more variance, then we
would like to preserve this fact.3

The complete set of results for all of the transformed responses is given in Ex-
hibit 3.1.

The constants give the predicted value for mean values of y and x, when y* = x* = 0;
for example, the average of d ¼ is 1.639, which transforms back to a value of d of
1.6394 = 7.216.

The regression coefficients can again be used as biplot vectors, shown in Exhibit
3.2. The positions of the sample points are identical to the previous Exhibits 2.3
and 2.4. The difference between this biplot and the previous one for untrans-
formed data (Exhibit 2.4) is that the regression surfaces (in the third dimension,
“above” the biplot space) indicated by the biplot vectors are linear planes for the
transformed variables, and thus nonlinear in terms of the original ones. So
the calibration of the biplot axes in terms of the original variables is more com-
plicated because the intervals between scale units are not constant.

Exhibit 3.1:
The regression coefficients

for the five regressions
where in each case the

response variable has been
fourth root transformed.

Overall variance explained 
is 33.9%

Biplot with nonlinear
calibration
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3. In this example the standard deviations of the original frequencies varied from 3.96 for species e to 12.6 for
species a, while in the double square root transforms the range is from 0.602 for species d to 0.907 for
species c.  Notice that the ordering of the standard deviations is not necessarily preserved by the power trans-
formation of the data, even though the transformation is monotonic.

Std devn Constant y* x* R 2

a ¼ 0.905 1.492 –0.672 0.073 60.5%
b ¼ 0.845 1.301 –0.506 0.006 36.2%
c ¼ 0.907 1.211 0.387 0.086 15.9%
d ¼ 0.602 1.639 –0.288 0.060 27.6%
e ¼ 0.755 0.815 –0.375 –0.255 22.8%



For example, let us consider variable d again, and its transformed version d0 = d ¼.
Exhibit 3.3 illustrates the calculations which we describe now. The centre of the
map corresponds to the mean of the transformed variable, 1.639, which we al-
ready calculated above to correspond to 7.216 of the original variable, so we know
that the value of d at the origin is 7.216 and that it is increasing in the direction
of the arrow, i.e., downwards in the biplot.

The first “tic mark” we would put on the biplot axis through d is at the value 10,
which on the transformed scale is 10¼ = 1.778. The difference between this value
and the mean value of 1.639 is 0.139. A unit length on the axis is, as before, 1 di-
vided by the length of the biplot vector: , as shown
in Exhibit 3.3. Hence, the distance along the biplot axis to put the tic mark is
0.139 × 3.399 = 0.472. The next tic mark at d = 15 corresponds to 15¼ = 1.968, a
difference of 1.968 − 1.778 = 0.190 from the position of d = 10, hence at a distance
of 0.190 × 3.399 = 0.646 from the tic mark for 10. Going in the other direction,
to put a tic mark for d = 5, the transformed value is 5¼ = 1.495, a difference rela-
tive to the position of d = 10 of 1.778 − 1.495 = 0.283, or 0.283 × 3.399 = 0.962
units away from the tic mark for 10 in the negative direction for d (i.e., upwards

+  =/1 0.288 0.0602 3.3992

Exhibit 3.2:
Biplot of the fourth root
transformed species data,
showing biplot vectors given
by regression coefficients in
Exhibit 3.1, i.e., the
directions of planes
corresponding to
regressions of the
transformed species
variables on standardized
“pollution” ( y*) and
standardized “depth” (x*)
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in Exhibit 3.2). The tic mark for 1 (same on original and transformed scales) is
0.495 transformed units away from 5, and so 0.495 × 3.399 = 1.682 units away from
5 on the biplot axis. The nonlinearity of the calibration on the biplot axis is clear
in Exhibit 3.3, with the tic marks getting closer together as d increases. The con-
tours are still perpendicular to the biplot axis, so the interpretation is still based
on projecting the biplot points onto the biplot axes, bearing in mind the con-
tracting scale due to the transformation.

The fourth root transformation of the response variable is a monotonically increas-
ing function, hence the calibration of the biplot axis shows values increasing in
the direction of the biplot vector, albeit increasing in a nonlinear fashion. Al-
though seldom done, a non-monotonic transformation, for example a quadratic
transformation which rises and then falls, could also be applied to the response
variable. The effect would be that the calibrations on the biplot axis would in-
crease and then decrease again.

The regression biplots in Chapter 2 and those described above with trans-
formed responses use regression coefficients for the biplot vectors that have
been obtained using least-squares fitting of the response variable, with or with-

Exhibit 3.3:
Nonlinear calibration of

biplot axis through reponse
variable  d. Because  d has

been fourth root
transformed, the

calibrations are not at
regular intervals

Poisson regression
biplots 
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out transformation, to the explanatory variables. This idea originates in the as-
sumption that, conditional on the explanatory variables, the distribution of
the response variable in the population is normal, with the conditional mean
of the response equal to a linear function of the explanatory variables. In gen-
eralized linear modelling this idea is extended to different distributions, but
in every case some transformation of the mean of the response, called the link
function, is modelled as a linear function of the explanatory variables. Linear
regression is the simplest example of a generalized linear model (GLM) where
there is no transformation of the mean (i.e., the link function is the identity
function) and the conditional distribution is normal. The coefficients of a
GLM are estimated using the principle of maximum likelihood, which has as
a special case the least-squares procedure when the assumed distribution is
normal.

The first example of a “non-normal” GLM that we consider is Poisson regression.
Since the species variables a to e are counts, a more appropriate distribution
would be the Poisson distribution. In Poisson regression the link function is log-
arithmic, so the model postulates that the logarithm of the response mean is a lin-
ear function of the explanatory variables, and the assumed conditional distribu-
tion of the response is Poisson. Fitting this model for each of the five responses is
just as easy in R as fitting regular regression, using the glm function (see the Com-
putational Appendix) and the estimated coefficients are given in Exhibit 3.4. No-
tice that the way the success of the model fit is measured is the opposite here, in
the sense that for good fit the “error” should be low. In the simple regression case,
subtracting the “error” from 1 would give R 2.

Notice the difference between the GLM and what we did before: we have not log-
transformed the original data, which would have been a problem since there are
zeros in the data, but have rather modelled the logarithm of the (conditional)
mean as a linear function of the explanatory variables. For example, in the case
of species d the model estimates are given by:

log(d−) = 2.296 − 0.337y* + 0.199x* (3.2)

Exhibit 3.4:
The regression coefficients
for the five Poisson
regressions of the species
responses on the predictors
“pollution” y* and “depth”
x*. Rather than variance
explained, the “error” of the
model fit is reported as the
deviance of the solution
relative to the null deviance
when there no predictors (so
low values mean good fit)
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Constant y* x* Error

log(a−) 2.179 –1.125 –0.067 0.388
log(b−) 1.853 –0.812 0.183 0.540
log(c−) 2.041 0.417 0.053 0.831
log(d−) 2.296 –0.337 0.199 0.614
log(e−) 0.828 –0.823 –0.568 0.714



Exponentiating both sides, this gives the equation:

d− = exp(2.296) · exp(−0.337y*) · exp(0.199x*) (3.3)

so that the exponentials of the coefficients −0.337 and 0.199 model the multi-
plicative effect on the estimated mean response: a one (standard deviation) unit
increase in y* multiplies d− by exp(−0.337) = 0.714 (a 28.6% decrease), while a
one unit increase in x* multiplies d− by exp(0.199) = 1.221 (a 22.1% decrease).
Again, the coefficients define a biplot vector in the space of the explanatory vari-
ables. To calibrate the vector, the value at the origin corresponds to the value of
the mean response at the means of the explanatory variables y* = x* = 0, that is
d− = exp(2.296) = 9.934. To place tic marks on the biplot axis we would again cal-
culate what a unit length on the axis is: , which cor-
responds to a unit on the logarithmic scale. Using this we can work out where tic
marks should be placed for values of d− such as 0, 5, 10, 15, etc.—this will be a log-
arithmic scale on the biplot axis, with intervals between tic marks contracting as
the response variable increases. We do not show the Poisson biplot here, but it
can be computed using the script in the Computational Appendix.

Let us suppose, as is indeed common in ecological research, that we are interest-
ed more in the presence/absence of species than their actual abundances; that is,
we replace all positive counts by 1 and leave the zeros as 0. The mean of 0/1 data
is the probability p of a presence (i.e., a 1), so we write pa , pb , …, pe, for the prob-
abilities of the five species presence/absence variables. Logistic regression can be
used to predict the dichotomous presence/absence response variables, given the
explanatory variables. This is another GLM where the assumed distribution of the
0/1 data is binomial and the link function is the logit, or log-odds, function. The
logit function is log(p/(1−p)), abbreviated as logit(p). Again, the fitting of this
GLM is a simple option of the R glm function (see the Computational Appendix)
and the estimated coefficients are listed in Exhibit 3.5.

Using species d once more as an example, the estimating equation is:

(3.4)

and the coefficients −1.177 and −0.137 estimate the changes in the log-odds of the
probability of species d. Using the coefficients we can again make a biplot of the
five species in the space of y* and x*, shown in Exhibit 3.6. This could be cali-
brated in units of odds, pd /(1 − pd), or transformed back to units of pd as follows,
thanks to the inverse transformation:

+  =/1 0.337 0.1992 2 2.556

Logistic regression
biplots
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(3.5)

So for y* = x* = 0, exp(2.712) = 15.06 and the estimated probability of d is
15.06/16.06 = 0.938 (from Exhibit 2.1 species d occurs at 27 out of 30 sites, so
its probability of a presence is high, but comes down mainly when y* increases). So
the origin of the map corresponds to an estimated pd of 0.938. Where would the

Exhibit 3.5:
The regression coefficients
for the five logistic
regressions of the species
responses on the predictors
“pollution” y* and “depth”
x*, showing their error
deviances

Exhibit 3.6:
Logistic regression biplot of
the presence/absence data
of the five species. The
calibration for species d is
shown in the form of
contours in units 
of predicted probability of
presence. The scale is linear
on the logit scale but 
non-linear on the probability
scale, as shown
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Constant y* x* Error

logit(pa) 2.384 –2.889 0.863 0.464
logit(pb) 1.273 –1.418 –0.143 0.756
logit(pc) 0.831    0.973 0.315  0.911
logit(pd) 2.712 –1.177 –0.137 0.798
logit(pe) 0.253 –1.280 –0.786  0.832

1 +
. . y x− −* .= 2 712 1 177 0 137exp( *
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))
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tic mark be placed for 0.95? The corresponding logit is log(0.95/0.05) = 2.944,
which is 2.944 − 2.712 = 0.232 units higher on the logit scale from the origin.
The unit length is once more the inverse of the length of the biplot vector

, so the tic mark for 0.95 is at a distance 0.232 × 0.844
= 0.196 from the origin in the positive direction of d. Exhibit 3.6 shows the logistic
regression biplot with the contours of the probability function for species d.

In a similar way the logistic regression surfaces could be indicated for each of the
other species as a sequence of probability contour lines at right angles to the bi-
plot vectors in Exhibit 3.6, where the origin corresponds to the probability for the
means of the explanatory variables and the probability contours increase in the
direction of the respective biplot vectors.

1. A regression biplot can still be made if a nonlinear transformation of the re-
sponse variable is performed: the effect is that the tic marks on the biplot axes
are not at equal intervals, that is, the calibration is nonlinear.

2. Generalized linear models generalize linear regression to include different rela-
tionships between the conditional mean of the response variable and the ex-
planatory variables as well as different distributions for the response variable.
In each generalized linear model the conditional mean, transformed by the
link function, is modelled as a linear function of the explanatory variables.

3. Examples of generalized linear models are Poisson regression (for count data),
where the link function is the logarithm and the assumed distribution is Pois-
son; and logistic regression (for discrete responses), where the link function is
the logit and the assumed distribution is binomial.

+  =/1 1.177 0.1372 2 0.844

SUMMARY:
Generalized Linear 

Model Biplots
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CHAPTER

Multidimensional Scaling Biplots

Multidimensional scaling is the graphical representation of a set of objects based on
their interpoint distances. The method originated in psychological experiments
where people were asked to judge the similarities of the objects, examples of
which were a set of paintings, a set of writings, a set of countries or a set of prod-
ucts. This approach is often called perceptual mapping because it results in a spatial
map of the respondents’ perceptions of the set of objects. These maps are multi-
dimensional, although they are usually represented in their best two-dimensional
aspects, appearing like a scatterplot of the objects. In this map the horizontal and
vertical axes are known as principal axes, which are artificially created to provide
the support on which the objects are represented. If in addition there are vari-
ables characterizing the set of objects, then these variables can be added as biplot
axes to the multidimensional scaling map.

Contents
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In the first class that I give in my postgraduate course “Methods of Marketing Re-
search”, I ask the students, who usually come from a number of different coun-
tries, to evaluate the similarities and differences between these countries on a scale
from 1 (most similar) to 9 (most different). Exhibit 4.1 is an example of a table giv-
en by one of the students, with initials MT, for the 13 countries represented in that
particular class. A low value given to a pair of countries, for example a 2 between
Italy and Spain, means that MT perceives these countries as being very similar to
one another, whereas a high value, for example a 9 between Russia and Spain,
means that he perceives them to be very different. The idea in multidimensional scal-
ing (MDS) is to represent the countries in a spatial map such that the physical

Multidimensional 
scaling—data set
“countries”
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distances in the map approximate as closely as possible the values in the matrix.
The way this approximation is measured and optimized distinguishes the differ-
ent methods of MDS, but we do not enter into those details specifically here (see
the Bibliographical Appendix for some recommended literature). 

The result of one approach, called classical MDS (function cmdscale in R—see
Computational Appendix) is given in Exhibit 4.2. The countries are depicted as
points and the distances between pairs of countries are approximations of the
numbers in Exhibit 4.1. In this map we can see that Russia and Spain indeed turn
out to be the furthest apart, while Italy and Spain appear close together, so at a
first glance it seems like we have a good representation. We can approximately
measure the interpoint distances in Exhibit 4.2 according to the scale shown on
the sides, then the distances are always less than those in the table of ratings: for
example, the distance between Italy and Spain in Exhibit 4.2 is about 1 unit
whereas the given rating is 2. This is because classical scaling approximates the
distances “from below”—the country points actually reside in a higher-dimen-
sional space and have been projected onto a two-dimensional plane within this
space. So all distances become shortened by this projection.

To measure how good the map is, a quality of approximation is measured in a
similar way as it is done in regression analysis. In Exhibit 4.2 56.7% of the vari-
ance is accounted for. If we added a third dimension to the solution, depicting
the countries in a three-dimensional map, a further 12.9% of the variance
would be visualized, bringing the overall quality to 69.6%. In the Web Appen-
dix a three-dimensional rotation of these country points is shown to illustrate
the additional benefit of viewing the results in a three-dimensional space. For

Exhibit 4.1:
Student MT’s ratings of the

similarities/differences
between 13 countries, 
on a scale 1 = most
similar to 9 = most

different. The column labels
are the international codes

for the countries used in the
MDS maps

Classical scaling
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COUNTRIES I E HR BR RU D TR MA PE NG F MX ZA

Italy 0 2 5 5 8 7 3 5 6 8 4 5 7
Spain 2 0 5 4 9 7 4 7 3 8 4 4 6
Croatia 5 5 0  7 4 3 6 7 7  8 4 6 7
Brazil 5 4 7 0 9 8  3 6 2 7 4 3 5
Russia 8 9  4 9 0 4 7  7  8 8 7  7 7
Germany 7 7 3 8 4 0 7 8 8 8 4 8 8
Turkey 3 4 6 3  7 7  0  5 4 5 6 4 5
Morocco 5 7  7 6 7 8 5  0 7 4 6 6 4
Peru 6 3 7 2  8 8  4  7  0  6 7 2 4
Nigeria 8 8 8 7 8 8  5 4 6  0 6 3 3
France 4 4 4 4  7 4 6 6  7 6 0 8 7
Mexico 5 4 6 3  7 8 4 6 2 3 8  0 4
South Africa 7 6 7 5  7 8  5 4 4 3 7  4 0



our present purpose, however, we shall use the two-dimensional map. In Chap-
ter 5 the topic of dimension reduction is explained more fully, with some tech-
nical details.

Exhibit 4.2 differs from the maps up to now (for example, Exhibits 2.5, 3.2 and
3.6) in one important respect: previously these maps were drawn using two ob-
served variables, the (standardized) pollution and depth variables, whereas in
MDS the axes on which the plot is constructed are so-called principal axes. These
are not observed, but derived from the data with the objective of explaining the
most variance possible: alternative names for the principal axes are latent variables
or factors. As mentioned above, Exhibit 4.2 is the best view of the country points
that can be achieved by projecting them onto a plane—in this plane the two axes
are defined in order to be able to orientate the representation. These principal
axes have the property that they are uncorrelated and the variance of the coun-
try points along each axis is equal to that part of the variance accounted for by
that axis. The principal axes are also nested, which means that the first principal
axis gives the best one-dimensional solution, explaining 33.3% of the variance in

Principal axes

Exhibit 4.2:
MDS map of the 13
countries according to the
ratings in Exhibit 4.1. The
percentage of variance
accounted for is 56.7%,
with 33.3% on the first
dimension, and 23.4% 
on the second
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this example, the space defined by the first two principal axes gives the best two-
dimensional solution, explaining 33.3 + 23.4 = 56.7% of the variance, and so on.
Each principal axis simply builds on the previous ones to explain additional vari-
ance, but in decreasing amounts. This is identical to the situation in stepwise re-
gression when all the explanatory variables are uncorrelated.

Suppose now that we had additional variables about the 13 countries, which could
be economic or social indicators or even further ratings by the same student. In
fact, each student had to supply, in addition to the inter-country ratings, a set of
ratings on six attributes, listed in Exhibit 4.3. The idea is now to relate these rat-
ings to the MDS map in exactly the same way as we did before, and represent each
of these attributes as a biplot vector. This will give us some idea of how these at-
tributes relate to the general perception summarized in Exhibit 4.2. Each of the
variables in Exhibit 4.3 is linearly regressed on the two dimensions of Exhibit 4.2
(the country coordinates used as predictors are given in Exhibit 4.3 as well), giv-
ing the regression coefficients in Exhibit 4.4.

The regression coefficients for the two dimensions again define biplot vectors
which can be overlaid on the MDS plot—see Exhibit 4.5. Since the dimensions
are centred in the MDS, the constants are the means for each attribute, situat-
ed at the origin of Exhibit 4.5. Each of the biplot axes through the biplot vec-
tors could then be calibrated by working out what one unit is on its axis, as be-
fore. A unit will be inversely proportional to the length of the biplot vector, so
the tic marks for “infrastructure”, one of the longest vectors, will be closer to-
gether than those for “security”, a shorter vector. Thus, even though both of

Exhibit 4.3:
Student MT’s ratings of 
the 13 countries on six

attributes: standard of living
(1 = low,…,9 = high);

climate (1 = terrible,…,
9 = excellent); food

(1 = awful,…,
9 = delicious); security

(1 = dangerous,…,
9 = safe); hospitality

(1 = friendly,…,
9 = unfriendly);

infrastructure
(1 = poor,…,9 =

excellent). On the right are
the coordinates of the

country points in the MDS
map of Exhibit 4.2

Multidimensional scaling
biplot—data set

“attributes”
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dim1 dim2

0.01 –2.94

–1.02 –3.68

3.70 –0.88

–2.56 –2.01

4.41 2.91

5.01 0.00

–1.38 –0.48

–0.87 2.27

–2.77 –0.74

–1.97 3.91

2.18 –1.76

–2.58 0.77

–2.16 2.62

COUNTRIES living climate food security hospitality infrastructure

Italy 7 8 9 5 3 7

Spain 7 9 9 5 2 8

Croatia 5 6 6 6 5 6

Brazil 5 8 7 3 2 3

Russia 6 2 2 3 7 6

Germany 8 3 2 8 7 9

Turkey 5 8 9 3 1 3

Morocco 4 7 8 2 1 2

Peru 5 6 6 3 4 4

Nigeria 2 4 4 2 3 2

France 8 4 7 7 9 8

Mexico 2 5 5 2 3 3

South Africa 4 4 5 3 3 3



these vectors point in exactly the same direction, there will be more variance in
the projections of the countries onto “infrastructure” than onto “security”. Notice
that “hospitality” is worded negatively, so that the biplot vector is pointing to the
“unfriendly” end of the scale: “friendly” would point to the left. It seems that the
perception of the student in separating the South American countries on the left
is due to their friendly hospitality, and that Brazil is not only hospitable but has a
good climate and food as well.

Exhibit 4.4:
The regression coefficients
for the regressions of the six
attributes on the two
dimensions of the MDS
solution in Exhibit 4.2, as
well as the measure of fit
(R 2 ) in each case

Exhibit 4.5:
MDS biplot, showing the
countries according to the
data of Exhibit 4.1 (i.e., the
map of Exhibit 4.2), with the
six attributes added as
biplot vectors. Each biplot
vector can be calibrated, 
as before, in its units 
from 1 to 9
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Constant dim1 dim2 R 2

Living 5.231 0.423 –0.513 0.754
Climate 5.692 –0.395 –0.618 0.693
Food  6.077 –0.399 -0.645 0.610
Security 4.000 0.502 –0.444 0.781
Hospitality 3.846  0.660 0.010 0.569
Infrastructure 4.923 0.627 –0.591 0.818

living
climatefood

security
hospitality

infrastructure
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Remember that the countries are positioned according to the student’s overall
perception of between-country differences, while the biplot vectors indicate how
the ratings on specific attributes relate to this perception. The parts of variance
explained (R 2) in Exhibit 4.4 show how well the attribute variables are represent-
ed. We can check some features of the map against the data in Exhibit 4.3 to get
a qualitative idea of how well, or how badly, the biplot is performing. The three
attributes “standard of living”, “security” and “infrastructure” all point towards the
European countries Germany, Croatia, France, Italy and Spain—these all fall
above the averages for these three variables, but in decreasing value as one can
see if one projects them onto the three corresponding biplot axes. To see if this
agrees with the data, we average the three ratings for these variables, obtaining
8.3, 5.7, 7.7, 6.3 and 6.7 respectively, which are all above the average (which is
equal to 4.7 in this case—Russia has an average of 5.0, which agrees with its posi-
tion in the map, while all the other countries are below average and on the neg-
ative side of these three attributes). The value of 5.7 for Croatia is most out of line
with the data—the general perception of Croatia, based on inter-country differ-
ences, places Croatia between Germany and France, but according to the attrib-
ute data Croatia should be lower down on the direction defined by these three
correlating attributes. Hence the lack of fit, or unexplained variance, in the at-
tributes in Exhibit 4.5 includes this “error” in their display with respect to Croat-
ia. But, of course, Exhibit 4.5 is not designed to show the attributes optimally
—these have been superimposed a posteriori on the map. In Chapter 6 we shall
perform an analysis specifically of the attribute data, in which we will see the at-
tributes represented with much higher R 2, and showing Croatia in a position
more in accordance with them.

We can anticipate the chapter on correspondence analysis (Chapter 8) by recon-
sidering data set “bioenv” of Exhibit 2.1. Previously we performed regressions of
the five species variables on two of the concomitant variables “pollution” and
“depth” and showed the results in the space of these two environmental variables.
We now take the MDS biplot approach, performing an MDS of the 30 stations in
terms of their species information and then show how the explanatory variables re-
late to the MDS map. The only decision we need to make is how to measure dis-
tance between the 30 stations—in contrast to the “countries” example above, the
distances are not the original data but need to be calculated from the species data.
Here the chi-square distance will be used, the distance function that is the basis of
correspondence analysis. This distance is based on the relative frequencies of the
species at each station and also adjusts the contribution of each species according
to its average across the 30 stations. This will be explained more in Chapter 8, but
to give one example, consider the distance between stations s1 and s2 (see Exhib-
it 2.1). The relative frequencies of the species at these two stations are, respective-
ly, [0  0.074  0.333  0.519  0.074] and [0.481  0.074  0.241  0.204  0]—for

Chi-square distance
biplot
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example, for station s2, a count of 26 for species a is 0.481 of the total of 54 indi-
viduals counted at that station (the second row total). The totals for each species
(column totals) have relative frequencies [0.303  0.196  0.189  0.245  0.067],
showing that species a is the most common and species e the most rare. The chi-
square distance between the two stations is computed as:

The division of each squared difference by the overall species proportion is a
form of standardization of the relative frequencies. There are bigger differences
between the more common species and smaller differences between rare species,
and the standardization serves to compensate for this natural variability found in
frequency data. Having computed the 30 × 30 chi-square distance matrix between
the 30 stations, the MDS procedure leads to a visualization of these distances,
shown in Exhibit 4.6. Then, by performing the regressions of the species variables

Exhibit 4.6:
MDS biplot, showing
approximate chi-square
distances between sites,
upon which are added the
biplot vectors of the five
species (using linear
regression), biplot vectors 
of the three sediment types
(using logistic regression)
and the averages of the
stations according to the
three sediment types
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on the two dimensions of the map, these can be depicted on the map (here we
use the relative frequencies, divided by the square roots of their respective aver-
ages, to be consistent with the way the chi-square distances were calculated). In
addition, the three categories of the variable sediment can be shown, either as the
averages of the site points in for each category or using the logistic regression bi-
plot. Notice once more that there are two levels of error in this biplot: first, the
chi-square distances between sites are not perfectly displayed (74.4% explained in
the map—52.4% on dimension 1, 22.0% on dimension 2—i.e., 25.6% error);
and second, the two dimensions only explain parts of variance of each species
(a: 76.7%, b: 18.6%, c: 92.1%, d: 14.6%, e: 95.8%) and of each category of sed-
iment (expressed as percentages of deviance explained in the logistic regres-
sions, C: 7.3%, G: 11.8%, S: 15.8%).

1. Multidimensional scaling (MDS) is a method that represents a set of objects as
a set of points in a map of chosen dimensionality, usually two-dimensional,
based on their given interpoint distances. The objective is to maximize the
agreement between the displayed interpoint distances and the given ones.

2. Any variable observed on the same set of objects can be superimposed on such
a map using the regression coefficients obtained from the regression of the
variable (or its standardized equivalent) on the dimensions of the MDS. The
resultant joint plot is a biplot: the objects can be projected onto the biplot vec-
tors of the variables to approximate the values of the variables. The optional
standardization of the variable only changes the lengths of the biplot vectors,
not their directions.

3. There are two different levels of error in the display. First, there is the error in-
curred in the MDS, because the distances are not perfectly displayed. Second,
there are the errors in the regressions of the variables on the dimensions.

SUMMARY:
Multidimensional 

Scaling Biplots
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CHAPTER

Reduced-Dimension Biplots

In the previous chapter, multidimensional scaling (MDS) involved reduction of di-
mensionality in order to visualize a high-dimensional configuration of points in a
low-dimensional representation. In some high-dimensional space distances be-
tween points are exact (or as near exact as possible for non-Euclidean dissimi-
larity measures), while they are approximated in some optimal sense in the low-
dimensional version. In this chapter we look at the theory and practice of
dimensionality reduction, and how a data matrix of a certain dimensionality can
be optimally approximated by a matrix of lower, or reduced, dimensionality. Al-
gebraically, the geometric concept of dimensionality is equivalent to the rank of
a matrix, hence this chapter could also be called reduced-rank biplots. This topic
is concentrated almost entirely on one of the most useful results in matrix alge-
bra, the singular value decomposition (SVD). Not only does this result provide us
with a solution to the optimal reduced-rank approximation of a matrix, but it
also gives the coordinate values of the points in the corresponding biplot display.
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Data matrices usually have many rows (cases) and many columns (variables), such
as the 13 × 6 matrix of Exhibit 4.3. The rank of a matrix is the minimum number
of row or column vectors needed to generate the rows or columns of the matrix
exactly through linear combinations. Geometrically, this algebraic concept is
equivalent to the dimensionality of the matrix—if we were lucky enough to have a
data matrix of rank 2, then we could represent the rows or columns in a two-di-
mensional plot. In practice, however, no large matrix is of low rank, but we can

Matrix approximation
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approximate it optimally by a matrix of low rank and then view this approximate
matrix in a low-dimensional space.

Suppose that Y is an n × m matrix with rank r (in most examples in practice, r will
be n or m, whichever is the smaller). Then the idea of matrix approximation is to
find another n × m matrix Ŷ of lower rank p < r that resembles Y as closely as pos-
sible. Closeness can be measured in any reasonable way, but least-squares ap-
proximation makes the solution of the problem particularly simple. Hence we
want to find a matrix Ŷ that minimizes the following objective function over all
possible rank p matrices:

(5.1)

The notation trace[…] signifies the sum of the diagonal elements of a square ma-
trix, and the square matrix (Y − Ŷ)(Y − Ŷ)T has exactly all the squared differences
between the corresponding elements of Y and Ŷ down its diagonal. Thanks to our
choosing a least-squares objective function, this minimization problem is very sim-
ple to solve using a famous result in matrix algebra.

The singular value decomposition, or SVD for short, is one of the most useful re-
sults in matrix theory. Not only will it provide us with the solution of the matrix ap-
proximation problem described above, but it also provides the solution in exactly
the form that is required for the biplot. The basic result is as follows: any rectan-
gular n × m matrix Y, of rank r, can be expressed as the product of three matrices: 

Y = U DαV
T (5.2)

where U is n × r, V is m × r and Dα is a r × r diagonal matrix with positive num-
bers α1, α2,…, αr , on the diagonal in descending order: α1 ≥ α2 ≥ … ≥ αr > 0. Fur-
thermore, the columns of U and of V are orthonormal, by which we mean that they
have unit length (sum of squares of their elements = 1) and are orthogonal, or
perpendicular to one another (i.e., scalar products between columns = 0, that is
they are geometrically perpendicular to one another); this property can be writ-
ten as UTU = VTV = I (where I denotes the identity matrix, a diagonal matrix with
1’s down the diagonal). The columns u1, u 2, …, ur, and v1, v2, …, vr , of U and V
are called left and right singular vectors respectively, and the values α1, α2,…, αr the
singular values of Y.

If the rank of Y happened to be low, say 2 or 3, then (5.2) would give us immedi-
ately the form “target matrix = left matrix · right matrix” of the biplot we need

Singular value
decomposition (SVD)
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(see (1.2)) for a two- or three-dimensional display, the only decision being how to
distribute the matrix Dα of singular values to the left and the right in order to de-
fine the biplot’s left matrix and right matrix (we shall discuss this critical decision
at length soon). In the more usual case that the rank of Y is much higher than 2
or 3, then the SVD provides us immediately with any low-rank matrix approxima-
tion we need, as follows. Define Ŷ as in (5.2) but use only the first p columns of
U, the upper left p × p part of Dα and the first p columns of V, in other words the
first p components of the SVD: Ŷ = U[p] Dα [p]V

T
[p], where the subindex [p] means the

“first p components”. Ŷ is of rank p and is exactly the solution to the least-squares
matrix approximation problem. And, once more, the decomposition provided by
the SVD is exactly in the form that we need for the biplot. 

The singular values provide us with quantifications of the closeness of the ap-
proximation of Ŷ to Y. The sum-of-squares of the singular values is equal to the
sum-of-squares of the matrix Y: trace(YY T) = Σi Σj

y 2
i j = α 2

1 + α 2
2 + … + α 2

r , and the
sum-of-squares of the matrix Ŷ is trace(Ŷ ŶT) = α 2

1 + α 2
2 + … + α 2

p , the sum of the
first p squared singular values. The latter is expressed as a fraction (or percent-
age) of the first to quantify the quality of the approximation, while the remainder
from 1 quantifies the error (5.1) of the approximation.

Consider again the target matrix on the left-hand side of (1.1) and let us pretend
we do not know that it decomposes as shown there. The SVD of this matrix cal-
culated in R using the built-in function svd in the second command below:

> Y<-matrix(c(8,5,-2,2,4,2,0,-3,3,6,2,3,3,-3,-6,-6,-4,1,-1,-2),
nrow=5)

> svd(Y)
$d
[1] 1.412505e+01 9.822577e+00 6.351831e-16 3.592426e-33

$u
[,1] [,2] [,3] [,4]

[1,] -0.6634255 -0.4574027 -0.59215653 2.640623e-35
[2,] -0.3641420 -0.4939878 0.78954203 2.167265e-34
[3,] 0.2668543 -0.3018716 -0.06579517 -9.128709e-01
[4,] -0.2668543 0.3018716 0.06579517 -1.825742e-01
[5,] -0.5337085 0.6037432 0.13159034 -3.651484e-01

$v
[,1] [,2] [,3] [,4]

[1,] -0.7313508 -0.2551980 -0.6276102 -0.0781372
[2,] -0.4339970 0.4600507 0.2264451 0.7407581
[3,] 0.1687853 -0.7971898 0.0556340 0.5769791
[4,] 0.4982812 0.2961685 -0.7427873 0.3350628

Some numerical 
examples
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The svd function returns the three parts of the decomposition: the singular val-
ues in $d, the left singular vectors in $u and the right singular vectors in $v. It is
clear from the singular values that only the first two are nonzero, so the matrix is
of rank 2 and can be written as (showing values to 4 decimal places):

To define a left and right matrix for the biplot, we can—for example—split the
singular values in the middle equally between the left and right singular vectors.
That is, multiply the two left singular vectors (two columns above) and the two
right singular vectors (two rows above) by the square roots                              and

respectively. (This way of splitting the singular values equally
between the left and right vectors leads to the so-called “symmetric biplot”).
This gives the following biplot solution and corresponding plot in Exhibit 5.1,
which is: 

In (5.1) the problem of minimizing fit to a given matrix by another of lower rank
was formulated. The idea can be generalized to include a system of weighting on
both the rows and columns of the table, the objective being to give them differ-
ential importance in the fitting process. For example, in survey analysis the rows
are respondents that are often not representative of the population from which
they are sampled. If there are proportionally too many women, say, in the sample,
then giving lower weights to the individual female respondents can restore the
representativeness in the sample. The same is true for the column variables: there
are many reasons why some variables may need to be downweighted, for example
their variance is by their very nature too high, or there are several variables that ba-
sically measure the same trait in the population. The idea of weighting can be car-
ried to the limit of giving zero weight to some respondents or variables—this is the
idea behind supplementary points, which will be explained in future chapters.

Suppose then that we have a set of positive weights w1, w2, …, wn for the rows of
a matrix and a set of positive weights q1, q2, …, qm for the columns. We can as-

. .9 8226 = 3 1341

Generalized matrix
approximation and SVD
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sume that the weights add up 1 in each case. Then, rather than the objective
(5.1), the weighted (or generalized) matrix approximation is formulated as fol-
lows:

(5.3)

This solution involves a weighted (or generalized) SVD, which can be solved us-
ing the usual (unweighted) SVD as follows: (1) pre-transform the matrix Y by
multiplying its rows and columns by the square roots of the weights, (2) perform
the SVD on this transformed matrix as in (5.2), and (3) “untransform” the left
and right singular vectors by the inverse square roots of the respective row and
column weights. These three steps can be expressed as follows:

(1) S = Dw
½ YD q

½ (5.4) 
(2) S = UDβV

T (5.5)
(3) U

~
= Dw

–½ U, and V
~

= Dq
–½ V (5.6)

Exhibit 5.1:
Symmetric biplot of the rank
2 example, rows labelled 1
to 5, columns A to D. The
square roots of the singular
values are assigned to both
left and right singular
vectors to establish the left
and right coordinate
matrices. The row–column
scalar products perfectly
reproduce the original target
matrix
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The best-fitting matrix of rank p, which minimizes (5.3), is calculated as before,
but using U

~
and V

~
:

Ŷ = U
~

[p]Dβ[p]V
~

[p]
T (5.7) 

Notice that U
~

and V
~

have columns (the generalized singular vectors) that are of
unit length and orthogonal in terms of weighted sum of squares and weighted
sum of cross-products: U

~ TDwU
~

= V
~ TDqV

~
= I. The singular values β1, β 2,…, βp in

(5.7) are then split between the left and right singular vectors to obtain the left
and right matrices in the biplot, either by assigning their square roots to the left
and right, or by assigning the singular values completely to either the left or the
right. 

The introduction of weights into the matrix approximation broadens the class of
methods that can be defined in terms of the SVD. All the biplots of interest turn
out to be special cases, depending on the definition of the matrix Y to be ap-
proximated, and the weights w and q assigned to the rows and columns. A useful
general method, which we call generalized principal component analysis (PCA), in-
cludes almost all the techniques to be described in the rest of this book. In this def-
inition we think of the matrix either as a set of rows or as a set of columns—we shall
assume that we think of the rows as points in a multidimensional space.

Suppose that the rows of X (n × m) define n points x1, x 2, …, xn, in m-dimensional
space—notice that vectors are always denoted as column vectors, so that 

The points have weights in the n × 1 vector w, where the weights are positive and
sum to 1: 1Tw = 1 (1 is an appropriate vector of ones in each case). Distances in
the m-dimensional space are defined by a weighted metric where the dimensions
are weighted by the positive elements of the m × 1 vector q: for example, the square
of the distance between the i-th and i'-th rows x i and x i' is (x i − x i')

TDq(x i − x i'). The
objective is to find a low-dimensional version of the rows of X which are the clos-
est to the original ones in terms of weighted least-squared distances.

There is a side result which proves that the low-dimensional solution necessarily
includes the centroid (weighted average) of the points, so we can centre all the
points beforehand. This is easily proved by assuming that the low-dimensional so-

Generalized principal
component analysis
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lution does not include the centroid and then arrive at a contradictory conclu-
sion. The centroid can, in fact, be thought of as the closest “zero-dimensional sub-
space” (i.e., a point) to the n points. This means that we first centre the row points
by subtracting their centroid wTX:

Y = X − 1w TX = (I − 1w T)X (5.8)

The matrix (I − 1w T) is called the centring matrix : the rows of Y now have a cen-
troid of 0: wTY = 0.

To find an approximating matrix Ŷ of rank p < m, the rows of which come closest
to the rows of Y in terms of weighted sum of squared distances, we need to solve
the following:

(5.9)

which is identical to (5.3). Hence the solution is contained in the generalized
SVD described above, with the matrix approximation given by (5.7). The coordi-
nates of the row points in the low-dimensional display are given by

F = U
~

[p]Dβ[p] (5.10) 

called the principal coordinates (of the rows in this case), which thus form the left
matrix of the biplot. The right matrix representing the columns is then V

~
[p], defin-

ing biplot axes. The singular values are thus assigned totally to the singular vec-
tors corresponding to the rows in this case. Most of the subsequent chapters will
deal with applications of this theory.

The MDS problem of Chapter 4 can be formulated as a SVD problem as well, in
fact the matrix decomposed is square symmetric and the SVD reduces to its spe-
cial case, the eigenvalue/eigenvector decomposition, or eigendecomposition. The
general formulation for the case when points are weighted is as follows:

– Suppose that the matrix of squared distances between n objects is denoted
by D(2) and that the objects are weighted by the n positive elements in the
vector w.

– Double-centre D(2) using the weights in w (the centring matrix is I − 1wT,
pre-multiplied to centre the rows, or transposed and post-multiplied to cen-
tre the columns), weight the points by pre- and post-multiplying by Dw

½, and
finally multiply the result by −½ before calculating the eigendecomposition

Classical 
multidimensional scaling
with weighted points
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S = −½ Dw
½(I − 1wT)D(2)(I − 1wT)TDw

½ = UDλU
T (5.11)

− Calculate the coordinates of the points: F = Dw
−½ UDλ

½ (5.12)

If we start off with a matrix X as in the previous section, where squared distances
between rows are calculated in the metric Dq , with points weighted by w, then the
above algorithm gives the same coordinates as the principal coordinates in (5.10),
and the eigenvalues here are the squared singular values in the generalized PCA:
λ k = βk

2.

1. Reduced-dimension biplots rely on approximating a matrix of high dimen-
sionality by a matrix of lower dimensionality. The matrix of low dimensionali-
ty is then the target matrix for the biplot.

2. If approximation of a matrix is performed using a least-squares objective, then
the singular value decomposition (SVD) provides the solution in a very con-
venient form as the product of three matrices: the left and right matrices of the
biplot are then provided by distributing the second matrix of the SVD (the di-
agonal matrix of singular values) to the first and third matrices (of singular
vectors).

3. The objective of least-squares matrix approximation can be generalized to in-
clude weights for the rows and the columns. This leads to a simple modifica-
tion of the SVD, called the generalized SVD, involving pre-transformation of
the matrix to be approximated and post-transformation of the singular vectors.

4. Generalized principal component analysis (PCA) is a geometric version of ma-
trix approximation, where a set of n vectors in m-dimensional space is project-
ed onto a subspace of lower dimensionality. The resultant reduced-dimension
biplot depicts the approximate positions of the n points along with m direc-
tions showing the biplot axes. 

5. Multidimensional scaling (MDS), including the general case where points
have any positive weights, can also be formulated as an eigenvalue/eigenvec-
tor special case of the SVD problem, because the matrix decomposed is square
and symmetric. The resultant coordinates are identical to those found in gen-
eralized PCA, if the interpoint distances are defined using the same metric.

SUMMARY:
Reduced-Dimension

Biplots

BIPLOTS IN PRACTICE

58



CHAPTER

Principal Component Analysis Biplots

Principal component analysis (PCA) is one of the most popular multivariate meth-
ods in a wide variety of research areas, ranging from physics to genomics and mar-
keting. The origins of PCA can be traced back to early 20th century literature in
biometrics (Karl Pearson) and psychometrics (Harold Hotelling). The method is
inextricably linked to the singular value decomposition (SVD)—this powerful re-
sult in matrix theory provides the solution to the classical PCA problem and, con-
veniently for us, the solution is in a format leading directly to the biplot display.
In this section we shall consider various applications of PCA and interpret the as-
sociated biplot displays. We will also introduce the notion of the contribution bi-
plot, which is a variation of the biplot that will be especially useful when the rows
and/or columns have different weights.
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The last section of Chapter 5 defined a generalized form of PCA where rows and
columns were weighted. If we consider the 13 × 6 data matrix of Exhibit 4.3, there
is no need to differentially weight the rows or the columns: on the one hand, the
countries should be treated equally, while on the other hand, the variables are all
on the same 1 to 9 scale, and so there is no need to up- or downweight any vari-
able with respect to the others (if variables were on different scales, the usual
way to equalize out their roles in the analysis is to standardize them). So in this
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example all rows and all columns obtain the same weight, i.e. w = (1/13)1 and
q = (1/6)1, where 1 is an appropriate vector of ones in each case. Referring to
(5.9), the matrix Dq defines the metric between the row points (i.e., the countries
in this example), so that distances between countries are the average squared dif-
ferences between the six variables.

The computational steps are then the following, as laid out in the last section of
Chapter 5. Here we use the general notation of a data matrix X with I rows and J
columns, so that for the present example I = 13 and J = 6. 

– Centring (cf. (5.8)):  Y = [I − (1/I )11T]X (6.1)

– Weighted SVD (cf. (5.4) and (5.5)):
S = (1/I )½ Y(1/J )½ = (1/I J )½ Y = UDβV

T (6.2)

– Calculation of coordinates; i.e., the left and right cf. (5.6) and (5.10)): 
F = I ½ UDβ and Γ = J ½ V (6.3)

Exhibit 6.1:
PCA biplot of the data in

Exhibit 4.3, with the rows in
principal coordinates, and

the columns in standard
coordinates, as given in

(6.3). This is the row-metric-
preserving biplot, or form

biplot (explained on
following page). Remember

that the question about
hospitality was worded

negatively, so that the pole
“friendly” is in the opposite

direction to the vector
“hospitality”—see 

Exhibit 4.3
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We use the term “weighted SVD” above even though there is no differential
weighting of the rows and columns: the whole of the centred matrix Y is simply
multiplied by a constant, (1/I J )½. The resultant biplot is given in Exhibit 6.1.

When the singular values are assigned totally to the left or to the right, the re-
sultant coordinates are called principal coordinates. The other matrix, to which no
part of the singular values is assigned, contains the so-called standard coordinates.
The choice made in (6.3) is thus to plot the rows in principal coordinates and the
columns in standard coordinates. From (6.3) it can be easily shown that the prin-
cipal coordinates on a particular dimension have average sum of squared coordi-
nates equal to the square of the corresponding singular value; for example, for F
defined in (6.3):

F TDw F = (1/I ) (I ½ UDβ)
T(I ½ UDβ) = Dβ

TUTUDβ = Dβ
2 (6.4)

By contrast, the standard coordinates on a particular dimension have average sum
of squared coordinates equal to 1 (hence the term “standard”); for example, for
Γ defined in (6.3):

Γ TDq Γ = (1/J )( J ½ V)T( J ½ V) = V TV = I (6.5)

In this example the first two squared singular values are β 1
2 = 2.752 and β 2

2 = 1.665.
If F has elements fi k , then the normalization of the row principal coordinates on the
first two dimensions is (1/13)Σi

fi 1
2 = 2.752 and (1/13)Σi

fi 2
2 = 1.665. For the col-

umn standard coordinates γjk the corresponding normalizations are (1/6)Σj
γj1

2 = 1
and (1/6)Σj

γj 2
2 = 1.

There are various names in the literature for this type of biplot. It can be called
the row-metric-preserving biplot, since the configuration of the row points approxi-
mates the interpoint distances between the rows of the data matrix. It is also
called the form biplot, because the row configuration is an approximation of the
form matrix, composed of all the scalar products YDqY

T of the rows of Y: 

YDqY
T = FΓ TDqΓF T = FF T (6.6)

In fact, it is the form matrix which is being optimally represented by the row points,
and—by implication—the inter-row distances which depend on the scalar products.

If the singular values are assigned totally to the right singular vectors in (6.2),
then we get an alternative biplot called the covariance biplot, because it shows the
inter-variable covariance structure. It is also called the column-metric-preserving bi-
plot. The left and right matrices are then defined as (cf. (6.3)):

Principal and standard
coordinates

Form biplot

Covariance biplot
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– Coordinates in covariance biplot:  Φ = I ½ U and G = J ½ V Dβ (6.7)

The covariance biplot is shown in Exhibit 6.2. 

Apart from the changes in scale along the respective principal axes in the row and
column configurations, this biplot hardly differs from the form biplot in Exhibit
6.1. In Exhibit 6.1 the countries have weighted sum of squares with respect to
each axis equal to the corresponding squared singular value, while in Exhibit 6.2
it is the attributes that have weighted sum of squares equal to the squared singu-
lar values. In each biplot the other set of points has unit normalization on both
principal axes. 

In the covariance biplot the covariance matrix Y TDwY = (1/I )Y TY between the
variables is equal to the scalar product matrix between the column points using
all the principal axes:

Y TDwY = GΦTDwΦGT = GGT (6.8)

Exhibit 6.2:
PCA biplot of the data in

Exhibit 4.3, with the
columns in principal

coordinates, and the rows in
standard coordinates, as
given in (6.7). This is the
column-metric-preserving

biplot, or covariance biplot
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and is thus approximated in a low-dimensional display using the major principal
axes. Hence, the squared lengths of the vectors in Exhibit 6.2 approximate the
variances of the corresponding variables—this approximation is said to be “from
below”, just like the approximation of distances in the classical scaling of Chap-
ter 4. By implication it follows that the lengths of the vectors approximate the
standard deviations and also that the cosines of the angles between vectors ap-
proximate the correlations between the variables. If the variables in Y were nor-
malized to have unit variances, then the lengths of the variable vectors in the bi-
plot would be less than one—a unit circle may then be drawn in the display, with
vectors extending closer to the unit circle indicating variables that are better
represented.

It can be easily shown that in both the form and covariance biplots the coordi-
nates of the variables, usually depicted as vectors, are the regression coefficients
of the variables on the dimensions of the biplot. For example, in the case of the
covariance biplot, the regression coefficients of Y on Φ = I ½ U are:

(Φ TΦ)−1Φ TY = (I U TU)−1(I ½ U)T(I J )½ UDβV
T         (from(6.2))

= J ½ DβV
T (because U TU = I)

which is the transpose of the coordinate matrix G in (6.7). In this case the re-
gression coefficients are not correlations between the variables and the axes (see
Chapter 2), because the variables in Y are not standardized—instead, the regres-
sion coefficients are the covariances between the variables and the axes. These co-
variances are equal to the correlations multiplied by the standard deviations of
the respective variables. Notice that in the calculation of covariances and stan-
dard deviations, sums of squares should be divided by I (=13 in this example)
and not by I − 1 as in the usual computation of sample variance.

The form biplot and the covariance biplot defined above are called dual biplots:
each is the dual of the other. Technically, the only difference between them is
the way the singular values are allocated, either to the left singular vectors in the
form biplot, which thus visualizes the spatial form of the rows (cases), or to the right
singular vectors in the covariance biplot, visualizing the covariance structure of
the columns (variables). Substantively, there is a big difference between these
two options, even though they look so similar. We shall see throughout the fol-
lowing chapters that dual biplots exist for all the multivariate situations treated.
An alternative display, especially prevalent in correspondence analysis (Chapter
8), represents both sets of points in principal coordinates, thus displaying row
and column structures simultaneously, that is both row- and column-metric-

Connection with 
regression biplots

Dual biplots
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preserving. The additional benefit is that both sets of points have the same dis-
persion along the principal axes and avoid the large differences in scale that are
sometimes observed between principal and standard coordinates. However, this
choice is not a biplot and its benefits go at the expense of losing the scalar-prod-
uct interpretation and the ability to project one set of points onto the other.
This loss is not so great when the singular values on the two axes being displayed
are close to each other—in fact, the closer they are to each other, the more the
scalar-product interpretation remains valid and intact. But if there is a large dif-
ference between the singular values, then the scalar-product approximation of
the data becomes degraded (see the Epilogue for further discussion of this
point).

From (6.6) and (6.8) it can be shown that the squared singular values are eigen-
values. If (6.6) is multiplied on the right by Dw F and (6.8) is similarly multiplied
on the right by DqG, and using the normalizations of F and G, the following pair
of eigenequations is obtained:

YDqY
TDwF = FDβ

2 and  Y TDwYDqG = GDβ
2,  where  F TDwF = GTDqG = Dβ

2 (6.9)

The matrices YDqY
TDw and YTDwYDq are square but non-symmetric. They are eas-

ily symmetrized by writing them in the equivalent form:

Dw
½ YDqY

TDw
½ Dw

½ F = Dw
½ FDβ

2 and  Dq
½ Y TDwYDq

½ Dq
½ G = Dq

½ GDβ
2

which in turn can be written as:

SSTU = Dβ
2   and  STSV = VDβ

2,  where  U TU = V TV = I (6.10) 

These are two symmetric eigenequations with eigenvalues λ k = βk
2 for k = 1, 2, …

The eigenvalues (i.e., squared singular values) are the primary numerical diag-
nostics for assessing how well the data matrix is represented in the biplot. They
are customarily expressed relative to the total sum of squares of all the singular
values—this sum quantifies the total variance in the matrix, that is the sum of
squares of the matrix decomposed by the SVD (the matrix S in (6.2) in this ex-
ample). The values of the eigenvalues and a bar chart of their percentages of the
total are given in Exhibit 6.3—this is called a scree plot.

It is clear that the first two values explain the major part of the variance, 57.6%
and 34.8% respectively, which means that the biplots in Exhibits 6.1 and 6.2 ex-
plain 92.4% of the variance. The pattern in the sequence of eigenvalues in the bar
chart is typical of almost all matrix approximations in practice: there are a few

Squared singular values
are eigenvalues

Scree plot
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eigenvalues that dominate and separate themselves from the remainder, with this
remaining set showing a slow “dying out” pattern associated with “noise” in the
data that has no structure. The point at which the separation occurs (between the
second and third values in Exhibit 6.3) is often called the elbow of the scree plot.
Other rules of thumb for deciding which axes reflect “signal” in the data, as op-
posed to “noise”, is to calculate the average variance per axis, in this case 4.777/6
= 0.796. Axes with eigenvalues greater than the average are generally considered
worth plotting.

Just like the eigenvalues quantify how much variance is accounted for by each
principal axis, usually expressed as a percentage, so we can decompose the vari-

Exhibit 6.3:
Scree plot of the six 
squared singular values
λ 1 , λ 2 , …, λ 6 , and a
horizontal bar chart of their
percentages relative 
to their total

Contributions to variance

Exhibit 6.4:
Decomposition of total
variance by dimensions and
points: the row sums are
the variances of the row
points and the columns
sums are the variances of
the dimensions
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ance of each individual point, row or column, along principal axes. But we can
also decompose the variance on each axis in terms of contributions made by each
point. This leads to two sets of contributions to variance, which constitute im-
portant numerical diagnostics for the biplot. These contributions are best un-
derstood in terms of the principal coordinates of the rows and columns (e.g., F
and G defined above). For example, writing the elements wi fi k

2 in an n × p matrix
(n rows, p dimensions) as shown in Exhibit 6.4. The solution in two dimensions,
for example, displays 100(λ1 + λ 2)/(λ1 + λ 2 + ··· + λp)% of the total variance. On
the first dimension 100wi fi1

2/λ1%of this dimension’s variance is accounted for by
point i (similarly for the second dimension)—this involves expressing each col-
umn in Exhibit 6.4 relative to its sum. Conversely, expressing each row of the table
relative to its row sum, 100 wi fi1

2/wiΣk
fi k

2% of point i’s variance is accounted for by
the first dimension and 100 wi fi 2

2/wi Σk
fi k

2% is accounted for by the second di-
mension. Notice that in this latter case (row elements relative to row sums) the
row weights cancel out. The ratio wi fi1

2/wiΣk
fi k

2 , for example, equals fi1
2/Σk

fi k
2,

which is equal to the squared cosine of the angle between the i-th row point and
the first principal axis, as illustrated in Exhibit 6.5.

In the principal component biplots defined in (6.3) and (6.7) the points in stan-
dard coordinates are related to their contributions to the principal axes. The fol-
lowing result can be easily shown. Suppose that we rescale the standard coordi-
nates by the square roots of the respective point weights, that is we recover the
corresponding singular vectors: 

from (6.3): (1/J )½ Γ = (1/J )½ J ½ V = V,

and from (6.7): (1/I )½ Φ = (1/I )½ I ½ U = U

Exhibit 6.5:
Geometry of variance

contributions: fik is the
principal coordinate of the
i-th point, with weight wi,
on the k-th principal axis.

The point is at distance 
di = Σk fik

2 f rom the
centroid of the points,

which is the origin of the
display, and θ is the angle

between the point vector (in
the full space) and the

principal axis. The square
cosine of θ is 

cos2(θ) = fik
2 / di

2 (i.e.,
the proportion of point i’s
variance accounted for by
axis k) and wifi1

2 is the
contribution of the i-th

point to the variance 
on the k-th axis

The contribution biplot
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Then these coordinates display the relative values of the contributions of the vari-
ables and cases respectively to the principal axes. In the covariance biplot, for ex-
ample, the squared value ui k

2 (where ui k is the (i,k)-th element of the singular vec-
tor, or rescaled standard coordinate of case i on axis k) is equal to (wi fi k

2)/λk,
where wi = 1/I here. This variant of the covariance biplot (plotting G and U to-
gether) or the form biplot (plotting F and V together) is known as the contribu-
tion biplot 4 and is particularly useful for displaying the variables. For example,
plotting F and V jointly does not change the direction of the biplot axes, but
changes the lengths of the displayed vectors so that they have a specific interpre-
tation in terms of the contributions. In Exhibit 6.1, since the weights are all
equal, the lengths of the variables along the principal axes are directly related to
their contributions to the axes, since they just need to be multiplied by a constant
(1/J )½ = (1/6)½ = 0.41. For PCA this is a trivial variation of the original definition
—because the point masses are equal, it just involves an overall rescaling of the
standard coordinates. But in other methods where the point masses are different,
for example in log-ratio analysis and correspondence analysis, this alternative bi-
plot will prove to be very useful—we will return to this subject in the following
chapters.

1. Principal component analysis of a cases-by-variables matrix reduces to a singular
value decomposition of the centred (and optionally variable-standardized) data
matrix. 

2. Two types of biplot are possible, depending on the assignment of the singular
values to the left or right singular values of the decomposition. In both the pro-
jections of one set of points on the other approximate the centred (and op-
tionally standardized) data.

3. The form biplot, where singular values are assigned to the left vectors corre-
sponding to the cases, displays approximate Euclidean distances between the
cases.

4. The covariance biplot, where singular values are assigned to the right vectors
corresponding to the variables, displays approximate standard deviations and
correlations of the variables. If the variables had been pre-standardized to
have standard deviation equal to 1, a unit circle is often drawn on the covari-
ance biplot because the variable points all have lengths less than or equal to 1
—the closer a variable point is to the unit circle, the better it is being dis-
played.

SUMMARY:
Principal Component
Analysis Biplots
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4. This variation of the scaling of the biplot is also called the standard biplot because the projections of points
onto vectors are approximations to the data with variables on standard scales, and in addition because it can
be used across a wide spectrum of methods and wide range of inherent variances.



5. The contribution biplot is a variant of the form or covariance biplots where the
points in standard coordinates are rescaled by the square roots of the weights
of the respective points. These rescaled coordinates are exactly the square
roots of the part contributions of the respective points to the principal axes,
so this biplot gives an immediate idea of which cases or variables are most
responsible for the given display.
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CHAPTER

Log-ratio Biplots

All the techniques described in this book are variations of generalized principal
component analysis defined in Chapter 5, and in Chapter 6 we demonstrated the
simplest version of principal component analysis. As mentioned at the end of
Chapter 6, when variables are on different scales they are usually standardized in
some way to equalize the roles of the variables in the analysis: this can be thought
of either as a pre-transformation of the data or equivalently as a reweighting of
the variables. Many other pre-transformations of the data are possible: for exam-
ple, to visualize multiplicative differences in the data the logarithmic transforma-
tion can be applied, in which case no further standardization is required. Data
that are proportions are often transformed by the arcsine function (i.e., the in-
verse sine function) or by some power function such as the square root. In this
chapter we treat the log-ratio transformation which is applicable to a common sit-
uation in practice: when data are all measured on the same units and strictly pos-
itive. The biplots that result have some special properties and this approach de-
serves a wider usage, hence a whole chapter is devoted to it.
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What has not been stated or explained up to now is that PCA assumes the data
are on interval scales. By this we mean that when we compare two values, we look
at their (interval) differences. For example, if we compare a temperature of 3.6
degrees with 3.1 degrees, we say that the difference is 0.5 degrees and this differ-
ence is comparable to the difference between 21.9 and 21.4 degrees. On the oth-
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er hand, many variables are measured on ratio scales where we would express the
comparison as a multiplicative, or percentage, difference. For example, a factory
worker obtains an increase in salary of 50 euros a month, but his salary before was
only 1000 euros a month, so this is in fact a 5% increase; if he were earning 3000
euros before, the increase would be 1.67%. Here it is relevant to compare the ra-
tios of the numbers being compared: 1050/1000 and 3050/3000, not their dif-
ferences. One has to carefully consider whether the observed variables are on in-
terval or ratio scales, as this affects the way we analyze them. In practice, the values
of the variable may be so far away from the zero point of their scale that the dis-
tinction between interval and ratio scale is blurred: for example, a 50-unit in-
crease on the much higher value of 100,000 is not much different, percentage-
wise, from a 50-unit increase on the higher value of 110,000.

The classic way to treat ratio-scale variables is to apply the logarithmic transfor-
mation, so that multiplicative differences are converted to additive differences:
log(x/y) = log(x) − log(y). If the variables are all ratio-scale in nature but in dif-
ferent measurement units, a blanket logarithmic transformation on all of them is
an excellent alternative to variable standardization. For example, an economist
might analyze the behaviour of several stock market indices such as Dow-Jones, Fi-
nancial Times, Nikkei, CAC40, etc (the variables) over time (the rows). Each vari-
able has its own inherent scale but differences between them are evaluated mul-
tiplicatively (i.e., percentage-wise). The logarithmic transformation will put them
all on comparable interval scales, perfect for entering into a PCA, without any
standardization necessary. In fact, standardization would be incorrect in this case,
since we want to compare the natural variation of the indices on the logarithmic
scale, and not equalize them with respect to one another. If we biplotted such
data, then the variables would be calibrated non-linearly on a logarithmic scale,
reminiscent of the biplots described in Chapter 3.

Log-ratios are a bit more specialized than logarithms. Not only are values com-
pared within each variable on a ratio scale, but also values within each case are
compared across the variables. This means that all the variables must be meas-
ured on the same scale. This approach originated in compositional data analysis
in fields such as chemistry and geology, where the variables are components of a
sample and the data express proportions, or percentages, of the components in
each sample (hence the values for each sample sum to 1, or 100%). It is equally
applicable to data matrices of strictly positive numbers such as values all in dol-
lars, measurements all in centimetres, or all counts. The R data set USArrests
has the 50 US states as rows, and the columns are the numbers of arrests per
100,000 residents of three violent crimes: murder, assault and rape. The “ratio” in
log-ratio analysis can refer either to ratios within a state or ratios within a crime.
The first five rows of this data set are:

The logarithmic
transformation

Log-ratios
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> USArrests[1:5,c(1,2,4)]
Murder Assault Rape

Alabama 13.2 236 21.2
Alaska 10.0 263 44.5
Arizona 8.1 294 31.0
Arkansas 8.8 190 19.5
California 9.0 276 40.6 

By ratios within a row (state) we mean the three unique ratios Murder/Assault,
Murder/Rape and Assault/Rape, which for Alabama are (to four significant fig-
ures) 0.05593, 0.6226 and 11.13 respectively. By ratios within a column (crime) we
mean the 50 × 49/2 = 1225 pairwise comparisons between states, of which the
first four for the column Murder are Alabama/Alaska: 1.320, Alabama/Arizona:
1.630, Alabama/Arkansas: 1.500, Alabama/California: 1.467. The basic idea in
log-ratio analysis is to analyze all these ratios on a logarithmic scale, which are in-
terval differences between the logarithms of the data. In general, for a I × J ma-
trix there are ½ I(I − 1) unique ratios between rows and ½ J( J − 1) unique ratios
between columns. Fortunately, we do not have to calculate all the above ratios—
there is a neat matrix result that allows us to work on the original I × J matrix and
effectively obtain all the log-ratios in the resulting map.

The algorithm for performing log-ratio analysis (LRA) relies on a double-centring
of the log-transformed matrix and a weighting of the rows and columns propor-
tional to the margins of the data matrix N:

– Let the row and column sums of N, relative to its grand total 
n = Σi Σj

ni j be denoted by r and c respectively:

r = (1/n)N1, c = (1/n)NT1 (7.1)

– Logarithmic transformation of elements of N: L = log(N) (7.2)

– Weighted double-centring of L: Y = (I − 1rT)L(I − 1cT)T (7.3)

– Weighted SVD of Y: S = Dr
½ Y Dc

½ = UDϕVT (7.4)

– Calculation of coordinates:

Principal coordinates of rows: F = Dr
−½ UDϕ, of columns: G = Dc

−½ VDϕ (7.5) 

Standard coordinates of rows: Φ = Dr
−½ U, of columns: Γ = Dc

−½ V (7.6)

(The above analysis is the weighted form of LRA, which is usually preferred
above the unweighted form, which has equal weights on the rows and columns;

Log-ratio analysis
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that is, unweighted LRA uses the same steps (7.1) to (7.6) but with r = (1/I)1,
c = (1/J)1.)

As before, two biplots are possible, but in this case they have completely symmet-
ric interpretations—in our terminology of Chapter 6, they are actually both form
biplots. The row-metric preserving biplot of F and Γ plots the rows according to
their log-ratios across columns, while the column-metric preserving biplot of G
and Φ plots the columns according to their log-ratios across rows. The points dis-
played in standard coordinates represent all the log-ratios by vectors between
pairs of points, called link vectors. It is the double-centring in (7.3) which gives
this special result that analyzing the matrix of I rows and J columns yields the
representation of all the pairwise log-ratios. To demonstrate these geometric fea-
tures with a simple example, we show the row-principal (F, Γ) LRA biplot of the
USArrests data in Exhibit 7.1. 

The double-centring removes one dimension from the data, hence the dimen-
sionality of this 3-column matrix is equal to 2 and Exhibit 7.1 displays 100% of the
variance, equal to 0.01790. This can be explained alternatively by the fact that any
of the three log-ratios is linearly dependent on the other two, hence the rank of
the matrix of log-ratios is 2. In this LRA biplot it is not the positions of the three
columns that are of interest but the link vectors joining them, which represent
the pairwise log-ratios. For example, the link from Rape to Assault represents the

Exhibit 7.1:
Log-ratio biplot of the

USArrests data set
from the R package, with

rows in principal and
columns in standard

coordinates. The columns
are connected by links

which represent the
pairwise log-ratios. 100%
of the log-ratio variance is

displayed. Notice the
different scales for the two

sets of points
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logarithm of Rape/Assault, and the link in the opposite direction represents the
negative of that log-ratio, which is the logarithm of Assault/Rape. A biplot axis
can be drawn through this link vector and the states projected onto it. The posi-
tion of Hawaii separates out at the extreme right of this Rape/Assault axis—in
fact, Hawaii has an average rate of Rape, but a very low rate of Assault, so the
Rape/Assault ratio is very high. Likewise, to interpret Murder/Assault log-ratios,
project the states onto this vector which is almost vertical. Hawaii projects high on
this axis as well, but it projects more or less at the average of the Murder/Rape
link. To know what “average” is, one has to imagine the link translated to the ori-
gin of the biplot, which represents the average of all the log-ratios; that is, draw
an axis through the origin parallel to the Murder/Rape link—the projection of
Hawaii is then close to the origin. Alternatively, project the origin perpendicu-
larly onto the links and this indicates the average point on the corresponding
log-ratios. 

The positions of the states in Exhibit 7.1 are a representation of log-ratio dis-
tances between the rows. This distance is a weighted Euclidean distance between
the log-ratios within each row, for example the squared distance between rows
i and i' :

(7.7)

This can be written equivalently as:

(7.8)

showing that log-ratios can be considered between the pair of values in corre-
sponding columns. Both (7.7) and (7.8) can be written equivalently in terms of
the logarithms of odds-ratios for the four cells defined by row indices i,i’ and col-
umn indices j,j' :

(7.9)

The log-ratio distances d jj'
2 between columns in the alternative column-principal

biplot are the symmetric counterparts of (7.7), (7.8) or (7.9), with index i substi-
tuting j in the summations, and ri substituting cj .

Log-ratio distance 
and variance
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The total variance of the data is measured by the sum of squares of (7.4), which
can be evaluated as a weighted sum of squared distances ΣΣi<i'

riri'd ii'
2 , for example

using the definition (7.9) of squared distance in terms of the odds-ratios:

(7.10)

In the above example the total variance is equal to 0.01790.

The LRA biplot works well for any strictly positive data that are all measured on
the same scale, and for which multiplicative comparisons of data elements, row-
or column-wise, make more sense than additive (interval) comparisons. Morpho-
metric data in biology are an excellent candidate for this approach, so we show
an application to a data set of 26 measurements on 75 Arctic charr fish. The data
come from a study of the diet and habitat of the fish and their relationships to
their body form and head structure.5 Exhibit 7.2 shows the abbreviated names of
the measurements.

The total variance in these data is 0.001961, much lower than the previous ex-
ample, indicating that the fish are quite similar to one another in an absolute
sense, which is not surprising since they are all of the same species. Nevertheless
there are interesting differences between them which may be related to their en-
vironment and diets. In Exhibit 7.3 shows the row-principal LRA biplot, where the
scale of the low-variance fish points has been enlarged 50 times to show them
more legibly. The fish have been labelled according to their sex (f = female, m =
male) and habitat where they were caught (L = littoral near shore, P = pelagic in
open sea). There does not seem to be any apparent connection with the distri-
bution of the fish and these labels—this can be tested formally using a permuta-
tion test, described in the Computational Appendix, while in Chapter 11 the top-
ic of direct comparison of groups of cases is treated (as opposed to comparisons
between individual cases, which is what is being analyzed here).

The variable points have no relevance per se, rather it is the links between all pairs
of variables that approximate the log-ratios—in fact, one could imagine all these
links transferred to the origin as vectors representing the pairwise log-ratios. Thus
the logarithm of the ratio Bc/Hpl (caudal peduncle length/posterior head length)
has one of the highest variances—its calibrations, proportional to the inverse of

Data set “morphology”

Diagnosing equilibrium
relationships
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5. Data provided by Prof. Rune Knudsen and the freshwater biology group of the Department of Arctic and
Marine Biology at the University of Tromsø, Norway.



Exhibit 7.2:
Morphological
characteristics from the left
side of Arctic charr fish.
Dashed lines indicate
heights, arrows indicate
widths 

Exhibit 7.3:
Log-ratio biplot of the
“morphology” data set, with
rows in principal and
column in standard
coordinates. Labels 
for the fish are: 
fL= female littoral; 
mL= male littoral; 
fP= female pelagic; 
mP= male pelagic.
34.5% of the total variance
is explained in this map

LOG-RATIO BIPLOTS

75

Hw

Bg

Bcw

Jm

Jl

Jw

Ed

HlHs

Hal

Fp Fal
Fpl

Bd
Fdl

Fdw

Bch
HgHh

Faw

Fc
Bc

Bac

Bp

Ba

Hpl

JI: lower jaw length; Jw: lower jaw width; Jm: upper jaw length; Ed: eye diameter; Hw: head width; Hh: head
height; Hg: head height behind gills; Hpl: posterior head length; Hl: head length; Hal: anterior head length;
Hs: snout length, head curvature from the snout to back of the gills; Ba: anterior body length from the snout
to the dorsal fin; Bp: posterior body length from the anal fin to the adipose fin; Bch: caudal height; Bc: caudal
peduncle length, from the adipose fin to ventral caudal height; Bac: caudal peduncle length, anal fin to dor-
sal caudal height; Bg: body width at gills; Bd: body width at dorsal fin; Bcw: caudal body width; Fc: caudal fin
length; Fp: pectoral fin length; Fdl: dorsal fin length; Fdw: dorsal fin width; Fpl: pectoral fin length; Fal: anal
fin length; Faw: anal fin width.

0

fP

mL

mL

mL

fL

mL

mL

fL

fP

fP

mP

mP

mP

mP

mP

fP

mL

mL
fL

fL

fL

fL

mL

fL

fL

mL
mL

fL

mL

mL

mL

mL

fL

fL

fL

fL

mL

fL

mL

mL

fL

mL

mL

mL

mL

mL

mL

fL

fL

fL

mL
mL

mP

mL

fL

fL

mL

fL

fL

fL

mL

fL

mL fL

fL

mL

mL

fL

fL

fP

mP

fP

fP
fP

fP

Hw

Bg

Bd
Bcw

Jw

Jl

Bp
Bac

Jm

Bch

Fc

Fdw
Faw

Bc

Fp

Fpl

Fal

Fdl

Hh

Hg

Ba

Hal

Hpl

Ed

Hl
Hs

–0.06 –0.04 –0.02 0.00 0.02 0.04

–
0
.0

4
–
0
.0

2
0
.0

0
0
.0

2
0
.0

4

1

–3 –2 –1 1 2

–
2

–
1

0
2



the vector length would be very close together, and thus the projections of the fish
onto this direction would vary greatly in value. 

A further interesting property of log-ratio analysis is that a certain class of models
can be diagnosed between subsets of variables if they line up in straight lines in
the biplot. In Exhibit 7.3 there is a lining up of the three variables Fdw (dorsal fin
width), Fdl (dorsal fin length) and Fal (anal fin length), indicated by the dotted
line. This means that the log-ratios formed from Fdw, Fdl and Fal could be linearly
related—we say “could be” because only 34.5% of the variance is explained by the
map and this lining up in the low-dimensional projection of the biplot does not
necessarily mean that the points line up in the full space (however, not lining up
in the biplot means they definitely do not line up in the full space). To investigate
this possible relationship, Exhibit 7.4 shows a scatterplot of two log-ratios, and in-
deed there is a high positive correlation of 0.700 (R 2 = 0.490).

To quantify the relationship we find the best-fitting straight line through the
points (this is the first principal axis of the points, not the regression line), and

Exhibit 7.4:
Plot of two log-ratios

diagnosed from Exhibit 7.3
to be possibly in a linear

relationship (the correlation
is 0.70). The best-fitting line

through the scatterplot has
slope equal to 0.707 and

intersection 0.0107
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this line turns out to have slope 0.707, and intersection with the vertical axis at
0.0107. So the relationship simplifies to:

log(Fdw/Fal) = 0.707 log(Fdl/Fal) + 0.0107

Exponentiating:

Fdw/Fal = 1.0108 × (Fdl/Fal)0.707

Simplifying:

Fdw = 1.0108 × Fdl0.707 × Fal0.293 (7.11)

Then, calculating the predicted values of Fdw, the dorsal fin width, as a func-
tion of Fdl (dorsal fin length) and Fal (anal fin length), we get a good fit (cor-
relation of 0.750, R2 = 0.562) between the predicted and observed values (Ex-
hibit 7.5).

Exhibit 7.5:
Predicted versus actual
values of  Fdw (dorsal fin
width) based on the model
of (7.11) 
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Notice that the model of (7.11) really only has two parameters, the multiplicative
constant and a single parameter for the two “predictor” variables, because their
power coefficients sum to 1. It is this type of restricted parameter model that is
called an “equilibrium model” in certain areas of research such as genetics, chem-
istry and geology.

1. Log-ratio analysis applies to any table of strictly positive data, where all data en-
tries are measured on the same scale.

2. The original I × J table is logarithmically transformed and then double-cen-
tred, where the rows and columns are weighted proportionally to their mar-
ginal sums, followed by a SVD decomposition. The form biplot, where singu-
lar values are assigned to the left vectors corresponding to the cases, displays
approximate Euclidean distances between the cases based on all the pairwise
log-ratios of the variables. 

3. Log-ratio biplots represent the pairwise log-ratios between all the columns, or
between all the rows, as the case may be. These are the vectors that connect
the pairs of columns or pairs of rows.

4. If a subset of columns, for example, line up in straight lines, this diagnoses pos-
sible equilibrium relationships in that subset, in the form of a multiplicative
power model relating the columns.

SUMMARY:
Log-ratio Biplots
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CHAPTER

Correspondence Analysis Biplots

Correspondence analysis is the most versatile of the methods based on the SVD
(singular value decomposition) for visualizing data. It applies primarily to a cross-
tabulation (also called a contingency table) of two categorical variables but can
be extended to frequency tables, ratio-scale data in general, binary data, prefer-
ences and fuzzy-coded continuous data. Like log-ratio analysis, correspondence
analysis treats the rows and columns of a table in a symmetric fashion. There are
several equivalent asymmetric ways of thinking about the analysis, however, and
there are different associated biplots depending on whether the rows or columns
are regarded as the “variables” of the table. In this chapter we define and illus-
trate the basic algorithm of correspondence analysis and list its properties and re-
lationships to principal component analysis, log-ratio analysis, multidimensional
scaling and regression biplots. In subsequent chapters various extensions of cor-
respondence analysis will be described: the multiple form in Chapters 9 and 10,
and the constrained form in Chapter 12.
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All the methods in this book are based on what the French call a triple (triplet) of
information for a data set: the definition of (1) objects in a multidimensional
space, (2) their weights, and (3) the distances between them. In MDS (multidi-
mensional scaling) the distances form the original data set and an approximate
map of the objects is produced. The objects could, however, have different

Profiles, masses and 
chi-square distances:
data set “smoking”
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weights and the analysis would then represent distances involving points with
higher weight better than those with lower weight. In PCA (principal component
analysis), the original data is in the form of a rectangular data matrix and each
row (or column) defines a point in multidimensional space. The points could be
assigned different weights here as well, and if the distance function between the
points is Euclidean, then the SVD provides the solution for the low-dimensional
visualization of the points. In correspondence analysis (CA), these three concepts
of points, weights and distances are called profiles, masses and chi-square dis-
tances, respectively. We review their definitions using the classic “smoking” data
set (available in the ca package in R), given in Exhibit 8.1. The first table is the
cross-tabulation of all 193 staff members of an organization according to their cat-
egory in the organization and their level of smoking.

The row profiles, given in the second table, are the frequencies in the rows di-
vided by their row sums (e.g., 0.364 = 4/11). The last row contains the average
row profile, which is the profile of the column sums of the original table (e.g.,
0.316 = 61/193). Similarly, the column profiles in the third table are the fre-
quencies in the columns divided by the column sums and the average column
profile in the last column is the profile of the row sums in the original table (e.g.,
0.057 = 11/193). The row profiles are the points visualized in the row problem,
and the column profiles are those visualized in the column problem.

Each profile has a weight called a mass, equal to the marginal sum of that row or
column as the case may be, divided by the grand total of the table. For example,
the first row profile has mass 11/193 = 0.057, which is identical to the first ele-
ment of the average column profile. Thus the average column profile contains
the row masses, and the average row profile contains the column masses. The
masses are used to weight the profiles in the analysis, so that profiles based on
larger counts have a stronger role in the analysis.

Distances between profiles are calculated using the chi-square distance, which has
already been introduced in Chapter 4. The average row profile, for example,
apart from serving to centre the row profiles, defines the distance function be-
tween row profiles, using the inverses of its values. For example, the distance be-
tween the first two row profiles is:

This is a natural default standardization for frequency data, which tend to have
higher variances if their means are higher. Similarly, chi-square distances can be

BIPLOTS IN PRACTICE

80

( . . )
.

( . . )
.

( . . )
.

0 364 0 222
0 316

0 182 0 167
0 233

0 273 0 389
0 32

2 2 2− − −+ +
11

0 182 0 222
0 130

2

0 345+ =−( . . )
.

.



Exhibit 8.1:
Data set “smoking” and its
row and column profiles, as
well as their respective
average profiles
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Original cross-tabulation:

STAFF GROUP SMOKING CLASS

None Light Medium Heavy Sum

Senior managers SM 4 2 3 2 11

Junior managers JM 4 3 7 4 18

Senior employees SE 25 10 12 4 51

Junior employees JE 18 24 33 13 88

Secretaries SC 10 6 7 2 25

Sum 61 45 62 25 193

Row profiles:

SMOKING CLASS

None Light Medium Heavy

SM 0.364 0.182 0.273 0.182

JM 0.222 0.167 0.389 0.222

SE 0.490 0.196 0.235 0.078

JE 0.205 0.273 0.375 0.148

SC 0.400 0.240 0.280 0.080

Average 0.316 0.233 0.321 0.130

Column profiles:

SMOKING CLASS

None Light Medium Heavy Average

SM 0.066 0.044 0.048 0.080 0.057

JM 0.066 0.067 0.113 0.160 0.093

SE 0.410 0.222 0.194 0.160 0.264

JE 0.295 0.533 0.532 0.520 0.456

SC 0.164 0.133 0.113 0.080 0.130



defined between the column profiles, using the inverses of the elements of the av-
erage column profile.

CA has many equivalent definitions and we give just one of them here. It is—at
the same time—a generalized PCA of the row profiles and a generalized PCA of
the column profiles, and the treatment of the rows and columns is the same, just
as in LRA (log-ratio analysis) of the previous chapter. And again, both the row
and column problems rely on the same matrix decomposition, as follows:

– First divide the original data table N by its grand total n = Σi Σj
ni j: P = (1/n)N

Denote by r and c the marginal sums of P: r = P1, c = PT1 (8.1)
(these are identical to r and c defined in (7.1)).

– Calculate the matrix of standardized residuals and its SVD:

S = Dr
−½(P − rcT)Dc

−½ = UDαV
T (8.2)

– Calculate the coordinates:

Principal coordinates of rows: F = Dr
−½ UDα, of columns: G = Dc

−½ VDα (8.3) 

Standard coordinates of rows: Φ = Dr
−½ U, of columns: Γ = Dc

−½ V (8.4)

Notice how similar this algorithm is to that of log-ratio analysis, formulated in
(7.1)−(7.6) of Chapter 7; in fact, the two algorithms can be seen to be even more
similar if the S matrix in (8.2) is rewritten in the equivalent form:

[matrix for SVD in CA]       S = Dr
½(I − 1rT)(Dr

−1P Dc
−1)(I − 1cT)TDc

½ (8.5)

whereas in log-ratio analysis, from (7.2), (7.3) and (7.4):

[matrix for SVD in LRA]     S = Dr
½(I − 1rT)log(N)(I − 1cT)TDc

½ (8.6)

So the difference is that CA analyzes the contingency ratios pi j /(ri cj) in Dr
−1P Dc

−1,
whereas LRA analyses the logarithms of the data log(N). Since the double-centring
removes any additive row or column constant, log(N) in (8.6) can be replaced by
log(Dr

−1P Dc
−1) without changing the matrix for the SVD. So the only real differ-

ence between LRA and CA is the logarithmic transformation! 

−p r c

r c
ij i j

i j

Correspondence
analysis (CA)
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As in LRA, there are two biplots that result in CA: the row-principal biplot (F, Γ )
and the column-principal biplot (G, Φ). In CA, however, the points in standard
coordinates have an additional geometric interpretation: they are the extreme
unit profiles or vertices of the profile space. Consider the row profiles of the
“smoking” data, for example, and their associated biplot coordinates: F for the
rows and Γ for the columns. In a two-dimensional display (using the first two
columns of F and Γ ) the five row points are projections of the row profiles
onto the best-fitting plane. The four column points, in standard coordinates,
are the projections onto the same plane of the unit profiles [1 0 0 0], [0 1 0 0],
[0 0 1 0] and [0 0 0 1]. Since any row profile [p 1 p 2 p 3 p 4] with elements adding
up to 1 can be expressed as p1 [1 0 0 0] + p 2 [0 1 0 0] + p 3 [0 0 1 0] + p 4 [0 0 0 1],
it follows that the row profiles are at weighted averages of the column points,
the weights being the profile elements. It is this weighted average (or cen-
troid) property that makes CA so popular in ecological applications—if the
columns follow an ecological gradient (for example, rainfall in a botanical
study) then the weighted averages of the columns points for each row profile
would situate the row on that gradient. Because the row and column points in
this biplot lie in the same space, with the column points defining the most ex-
treme profiles possible, the resultant display is also called a map, specifically an
asymmetric map. 

Asymmetric maps

Exhibit 8.2:
Row asymmetric CA map
(i.e., row principal biplot) of
the “smoking” data, with
rows in principal
coordinates and columns in
standard coordinates. This
map is reproduced directly
from the ca package in R
—see the Computational
Appendix
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Exhibit 8.2 shows the row asymmetric map of the “smoking” data set. Because
the two sets of points co-exist in the same space, the amount of variation be-
tween the row profiles can be seen in relation to the extreme vertex profiles.
The five row profiles actually lie inside a tetrahedron in three-dimensional
space, which has vertices defined by the four column points. As explained above,
each row profile is at the weighted average of the four vertex points in this three-
dimensional space, and so also in the projected map of Exhibit 8.2. Thus secre-
taries (SE) lie to the left because they must have higher than average proportion
of non-smokers, whereas junior employees and managers (JE and JM) lie to the
right because they have higher than average levels of smokers, with junior man-
agers tending towards the high smoking group. All these deductions from the
map can be confirmed in the data of Exhibit 8.1. In fact, we can be absolutely
sure of these conclusions because 99.5% of the variance in Exhibit 8.1 is dis-
played in the map.

In (8.1)–(8.5) the algorithm is presented as a decomposition of a matrix where
rows and columns have been treated symmetrically, but the same decomposition
can also be thought of asymmetrically as an analysis of rows or an analysis of
columns, as we in fact introduced it originally in the context of Exhibit 8.1. The
matrix formulation S in (8.2) (equivalently in (8.5)) can be written either as:

S = Dr
½(Dr

−1P − 1cT)Dc
−½ (8.7)

or, in transposed form:

ST = Dc
½(Dc

−1PT − 1rT)Dr
−½ (8.8)

These two formulations show that CA can be thought of either (in (8.7)) as a
weighted PCA (see Chapter 5) of the row profiles in the rows of Dr

−1P, weighted
by the row masses in r, centred at their average profile cT, in the chi-square met-
ric defined by Dc

−1; or (in (8.8)) as a weighted PCA of the column profiles in the
rows of Dc

−1PT, weighted by the column masses in c, centred at their average pro-
file rT, in the chi-square metric defined by Dr

−1. In the former row problem, the
asymmetric map represents the row profiles in principal coordinates, with the
unit profiles representing the columns in standard coordinates; in the latter asym-
metric map, the columns profiles are in principal coordinates with the unit pro-
files representing the rows in standard coordinates.

Exactly the same principal coordinates can be obtained if CA is formulated as a
pair of MDS problems. For example, chi-square distances are calculated between
row profiles using the metric Dc

−1 and with row points weighted by the row mass-
es in r. Then by applying the classical MDS algorithm, with weights, in (5.11) and

Connection with PCA
and MDS
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(5.12), the principal row coordinates are recovered exactly. A symmetric result
holds for the column profiles.

There are several ways to explain CA as a regression biplot, as described in Chap-
ter 2—we explain it here in terms of definition (8.7), the weighted PCA of the
row profiles, weighted by the row masses in the chi-square metric based on Dc

−1

(in other words, the asymmetric map of the row profiles). The j-th column of the
row profile matrix has elements p 1 j /r1, p 2 j /r2, ···, p I j /rI . Centring is with respect
to the average profile element cj and the chi-square standardization implies di-
viding the centred profile by the square root of the corresponding average pro-
file element, c j

½. An appropriate regression is then when these standardized values
((p i j /ri ) − cj)/c j

½ (i = 1, …, I ) constitute the response variable and the standard
row coordinates on the first two dimensions, say, form the explanatory variables,
then applying weighted least-squares fitting with weights equal to the row masses.
The solution gives a constant equal to 0 and coefficients equal to c j

½ times the
principal coordinates of the j-th column (this result is illustrated in the Compu-
tational Appendix). This result implies that, if the regression is performed on the
principal row coordinates rather than the standard ones, then the coefficients in
the solution will be exactly the coordinates of the columns in the contribution bi-
plot (see later in this chapter). 

The total variance in CA has a close connection with the chi-square statistic χ 2 of-
ten calculated on cross-tabulations as a measure of statistical association between
rows and columns. The total variance of the S matrix decomposed in (8.2) (equiv-
alently, (8.5), (8.7) or (8.8)) is: 

(8.9) 

In CA terminology this quantity is called the total inertia of the data matrix, or sim-
ply the inertia. It is easily shown that multiplying the inertia by the grand total n
of the matrix gives the chi-square statistic: χ 2 = n × inertia. As explained in gener-
al in Exhibit 6.4, there is a decomposition of total variance across points and across
principal axes, leading to two ways of defining contributions for the rows as well as
for the columns. First, contributions of each profile point to the inertia of each
axis (column proportions in Exhibit 6.4) are used to interpret each axis—in the ca
package in R, these are denoted by the acronym CTR and expressed as permills
(see Computational Appendix). Second, contributions of the axes to the inertia of
each point (row proportions in Exhibit 6.4) are squared angle cosines between the
axes and the points, interpreted as squared correlations or as proportions of iner-
tia explained at the point level rather than for all points together—these are de-
noted by the acronym COR in the ca package and also multiplied by 1000.

Connection with 
regression biplots 

Inertia and inertia 
decomposition
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This data set consists of 13 columns, the sites at which samples have been taken
on the sea bed in the North Sea near an oilfield to study the effect of oil explo-
ration on marine life. In each sample the benthic (“sea bed”) species have been
identified and counted, leading to an ecological abundance table where the
large number of variables (the species) form the rows and the smaller number
of samples the columns: in this case, 92 rows (species) by 13 columns (sites).
Two of the sites, labelled R40 and R42, are reference stations far from the oil-
field and regarded as an unpolluted environment. CA is regularly applied to
such abundance tables to visualize the sites in relation to their species composi-
tion (the “column problem”, the way the matrix is organized here) or to visual-
ize the species’ distribution across sites (the “row problem”). Exhibit 8.3 shows
the column principal asymmetric map, where sites in principal coordinates are
at weighted averages of species points in standard coordinates. The abbreviated
species names are shown only if they contribute more than 1% to the two-di-
mensional map—referring to Exhibit 6.4, this percentage is calculated as
100(wi fi 1

2 + wi fi 2
2)/(λ1 + λ2). Of the 92 species, only 10 contribute more than 1%

each, totalling 85% of the two-dimensional solution, while the remaining 82 col-
lectively contribute only 15%. 

Data set “benthos”

Exhibit 8.3:
Column principal CA biplot

of the “benthos” data, with
columns (sites) in principal

coordinates and rows
(species) in standard

coordinates. The 10 species
with abbreviated labels

each make a contribution of
more than 1% to the

solution, the others are
indicated by dots. Total

inertia is 0.783, with 57.5%
explained in the biplot
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The points that contribute highly to a CA map such as Exhibit 8.3 are generally
the high-frequency points, while the low-frequency points contribute very little.
The low frequency points, however, often have unusual profiles and lie on the pe-
riphery of the map, giving an impression of high importance—for example, in
the “benthos” application a very rare species, occurring in just two or three sites,
will have a profile at the outer reaches of the profile space. If we are interested
only in the direction vectors for the species in the biplot, then this is an excellent
situation to use the contribution biplot (see the end of Chapter 6). Rather than
use the standard coordinates to represent the species, as in Exhibit 8.3, these co-
ordinates are multiplied by the square roots of the corresponding species masses,
causing rare species to be pulled towards the centre, as shown in Exhibit 8.4.
The species vectors now show which ones are important to interpret, because
their lengths now reflect the contributions of the species to the solution. Exhibit
8.4 shows which are the important species that separate out the unpolluted sites
R40 and R42 to the right, while species Chaetesona setosa is generally found at pol-
luted sites, particularly S15 which is close to the oilfield. There is a very high
abundance of Myriochele oculata at site S24 which is not related to the pollution

Contribution CA biplot

Exhibit 8.4:
Contribution CA biplot of the
“benthos” data, with sites
in principal coordinates and
species in standard
coordinates multiplied by
the square roots of their
masses. The position of
each species on each axis is
now directly related to its
contribution to that axis.
The 10 highly contributing
species of Exhibit 8.3
(labelled) now stand out in
the biplot and all the others
collapse to the centre. In
this graphic the size of the
triangle at each species
point, rather than the label,
is related to the species
total abundance level 
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gradient—this gradient emerges as a curve from the bottom (sites S15, S9 and
S14) to the right (the reference stations). 

As described earlier in this chapter, the coordinates of the species in this contri-
bution biplot turn out to be the regression coefficients when the species are re-
gressed on the two CA dimensions, where (i) the species “response” is defined by
its elements in the matrix of site profiles, centred and normalized in a chi-square
fashion, (ii) the “predictors” are the principal coordinates of the sites, and (iii)
the regression is fitted by weighted least squares, using the site masses as weights.
This is an additional interpretation of the contribution biplot in the case of CA,
giving even more meaning to the positions of the species points in Exhibit 8.4.

1. Correspondence analysis is applicable to a table of nonnegative data, the pri-
mary example being a cross-tabulation of two categorical variables, that is a
contingency table.

2. The method can be thought of as an analysis of row or column profiles of the data
matrix—these are the rows or columns expressed relative to their marginal totals.

3. Each profile receives a weight equal to the relative marginal total, called a mass.

4. Distances between profiles are defined by the chi-square metric. This is essen-
tially a type of standardization of the profile values similar to that used in PCA,
but using the average profile element as an estimate of variance rather than
the variance itself.

5. The total variance, called inertia, in the data is numerically equal to the chi-
square statistic for the table divided by the table’s grand total.

6. Two types of asymmetric maps, both of which are biplots, are possible, de-
pending on whether row or column profiles (and thus their interpoint chi-
square distances) are visualized. Both are form biplots.

7. The contribution biplot can be particularly useful in CA applications, espe-
cially when there are quite different levels in rows or in columns (i.e., large dif-
ferences in the masses). This biplot pulls in the points represented in standard
coordinates by the square roots of their respective masses. For each such point,
the squares of its rescaled coordinates are equal to the part contributions that
the point makes to the respective principal axes.

8. In the contribution biplot, suppose that rows are in principal coordinates (i.e.,
row profiles are being visualized) and columns in “shrunken” standard coor-
dinates. Then these latter coordinates for each column are also regression co-
efficients when the standardized values for that column in the row profile ma-
trix are regressed on the principal coordinates of the rows, using weighted
least squares with weights equal to the row masses.

SUMMARY:
Correspondence Analysis

Biplots
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CHAPTER

Multiple Correspondence Analysis Biplots I

Multiple correspondence analysis is the extension of simple correspondence
analysis of a cross-tabulation of two categorical variables to the case of several vari-
ables. The method is used mostly in the visualization of social survey data, where
respondents reply to a series of questions on discrete scales such as “yes/no” or
“agree/unsure/disagree”. A type of data that is intermediate between simple and
multiple correspondence analysis is a concatenated, or stacked, table—this is a
block matrix composed of several two-way cross-tabulations of the same sample of
respondents, where each cross-tabulation is between a demographic and a sub-
stantive variable. In this chapter we show how CA biplots of a single table can be
extended to concatenated tables and then, in the following chapter, to multiple
correspondence analysis where several variables are cross-tabulated with one an-
other. The way total variance is measured and how it is decomposed into parts is
a recurrent theme in this area, and it will be shown how the biplot concept can
clarify this issue.
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The International Social Survey Program (ISSP) is an annual co-operative program
between many countries where social surveys are conducted to ask people in each
country the same questions on a different theme. The data we shall consider in
this chapter are from the third Family and Changing Gender Roles survey con-
ducted in 2002. Even though data are available from more than 30 countries, we
shall just treat the Spanish data here (see the second case study in Chapter 14 for

Data set “women”
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a more detailed analysis). Also, because we want to avoid the issue of missing val-
ues for the moment, we have deleted 364 cases with missing data, leaving 2107 of
the original 2471 respondents. The questions we focus on are those related to
working women and the effect on the family, specifically the following eight state-
ments to which the respondents could either (1) strongly agree, (2) agree, (3)
neither agree nor disagree, (4) disgree, or (5) strongly disagree: 

A: a working mother can establish a warm relationship with her child
B: a pre-school child suffers if his or her mother works
C: when a woman works the family life suffers
D: what women really want is a home and kids
E: running a household is just as satisfying as a paid job
F: work is best for a woman’s independence
G: a man’s job is to work; a woman’s job is the household
H: working women should get paid maternity leave

There were also several demographic variables, of which we retained the following:

g: gender (1 = male, 2 = female)
m: marital status (1 = married/living as married, 2 = widowed, 3 = divorced,

4 = separated, but married, 5 = single, never married)
e: education (0 = no formal education, 1 = lowest education, 2 = above low-

est education, 3 = higher secondary completed, 4 = above higher second-
ary level, below full university, 5 = university degree completed)

a: age (1 = 16-25 years, 2 = 26-35, 3 = 36-45, 4 = 46-55, 5 = 56-65, 6 = 66 and
older) 

Abbreviations in the analyses that follow are constructed in the obvious way: for
example, C2 is an agreement to statement C, and e5 is category 5 of education.
The only exception is for the variable H for which there were only two respon-
dents who strongly disagreed—these were combined with the disagree category,
leading to a new category denoted as H4,5. To demonstrate what is called interac-
tive coding of two variables, a variable with 12 categories was constructed from the
gender and age variables, with categories denoted by ma1 to ma6 (six age groups
for males) and fa1 to fa6 (six age groups for females).

In simple CA a single demographic variable would be cross-tabulated with a sin-
gle substantive question, for example the cross-tabulation of education (6 cate-
gories) with question A (5 categories). The pairwise cross-tabulations of each of
the demographic variables with each of the substantive questions can be assem-
bled in a block matrix called a concatenated table. Exhibit 9.1 shows just a part of
this 23 × 39 table (one less column because of the combining of H4 and H5), with

Concatenated table
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the rows being the categories of marital status (5 categories), education (6 cate-
gories) and the gender/age combinations (12 categories). Notice that the gender
and age groups themselves are not included along with their combinations, al-
though they can be added as so-called supplementary points in the analysis, a sub-
ject to be discussed later in this chapter.

This type of table is also called a block matrix, composed of 3 blocks row-wise and
8 blocks column-wise, that is 24 subtables in total which form the blocks, or sub-
tables, of the matrix. Each of the 24 subtables has the same grand total, which is
the number of respondents, equal to 2107. Each of the 8 subtables in a row block
has the same row margins and each of the 3 subtables in a column block has the
same column margins: for example, the row sums of the table cross-tabulating
marital status (m1 to m5) with question A (A1 to A5) are the same as the row sums
of the table cross-tabulating marital status with question B—these row sums are
the sample sizes given in column “n” of Exhibit 9.1. As a consequence of this
equality of marginal sums, it is easy to show the useful result that the total inertia
of the concatenated table is the average of the inertias of its 24 subtables.

Exhibit 9.1:
Part of the 23 × 39
concatenated table for the
“women” data set, showing
the first 10 columns
corresponding to the
response categories of
questions A and B. The 40
column categories are
reduced to 39 because H4
and H5 are combined. The
sample size for each
demographic category is
given in the last column.
There are 3 × 8 = 24
cross-tabulations in this
concatenated table
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A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 n

m1 192 486 54 381 56 80 550 138 334 67 ··· 1169

m2 21 68 9 63 11 13 101 16 37 5 ··· 172

m3 10 17 2 12 4 5 16 10 12 2 ··· 45

m4 12 32 5 16 4 4 30 7 24 4 ··· 69

m5 162 329 21 126 14 22 259 66 258 47 ··· 652

e0 23 97 16 90 14 20 138 26 52 4 ··· 240

e1 76 203 21 192 30 39 286 62 114 21 ··· 522

e2 99 263 28 168 22 37 264 69 182 28 ··· 580

e3 100 203 16 95 17 17 178 43 160 33 ··· 431

e4 48 81 2 32 3 5 52 13 78 18 ··· 166

e5 51 85 8 21 3 6 38 24 79 21 ··· 168

ma1 38 80 3 27 3 6 70 13 55 7 ··· 151

ma2 41 116 9 53 7 10 92 23 92 9 ··· 226

ma3 30 94 13 37 7 14 77 18 60 12 ··· 181

ma4 25 65 9 40 4 13 68 12 43 7 ··· 143

ma5 16 54 0 50 5 15 72 17 18 3 ··· 125

ma6 15 43 9 64 15 18 95 13 18 2 ··· 146

fa1 48 83 7 39 6 5 56 21 84 17 ··· 183

fa2 59 92 5 58 13 10 82 23 86 26 ··· 227

fa3 46 81 9 51 6 7 78 21 68 19 ··· 193

fa4 37 75 7 60 3 7 76 30 55 14 ··· 182

fa5 21 52 5 42 6 6 65 15 34 6 ··· 126

fa6 21 97 15 77 14 13 125 31 52 3 ··· 224



The most common way of showing the results of a CA is in the form of the sym-
metric map, shown in Exhibit 9.2. In this map both rows and columns are dis-
played in principal coordinates, with the result that the graphic is strictly speak-
ing not a biplot. However, interpoint chi-square distances are approximately
displayed both between rows and between columns. Since in this case the result
is very one-dimensional, with 82.1% of the inertia on the first dimension, we ini-
tially interpret only the left-to-right dispersion of the points. Clearly, categories on
the left hand side correspond to attitudes favourable to women working while
those on the right hand side correspond to the traditional view that they should
not work but look after the household and children. Correspondingly there is a
lining up of the demographic categories from left to right: for example, highest
education is on left and lowest on the right, and the age groups similarly vary
from youngest on the left to oldest on the right.

The total inertia in this example is equal to 0.06957, which is a very low value in
absolute terms: on average the associations between the demographic variables
and the question responses are low, which is quite typical for social science data.
Geometrically, this means that the row profiles, for example, are scattered close
to the average row profile, with the column vertex points at the outer extremities
of the profile space very far out from the set of row profile points. This is clear in
the asymmetric map/biplot of Exhibit 9.3, where the column points (in standard
coordinates) are so far away from the demographic row points (in principal co-
ordinates) that the latter are too close to one another to label.

Notice that for a concatenated table a vertex point consisting of zeros with a sin-
gle 1 does not have the same geometric meaning as in simple CA because it is a
point impossible to observe—a sample can not be present just for one variable
and non-existent elsewhere. But one can think about the row–column relation-
ship as an average of separate CA-type relationships across the column variables
as follows. Each row, for example education group e5, has a profile across each

Exhibit 9.2:
Symmetric CA map of the

concatenated table of
Exhibit 9.1. This is not a

biplot since both the row
and column points are
displayed in principal

coordinates

Symmetric CA map

Asymmetric map/biplot
for concatenated table
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column variable. There are thus 8 different weighted average positions that one
could compute for e5, computed the same way as in a simple CA—e5’s position
is then the ordinary average of these 8 positions. Exhibit 9.4 illustrates the idea by
showing the eight averages around e5 and also those around ma4, males in the
fourth age group. There is much more variance around e5 compared to ma4. Re-
spondents in the highest education group e5 react to statement G (“a man’s job
is to work; a woman’s job is the household”) with a relatively high level of dis-
agreement, whereas with respect to statement E (“running a household is just as
satisfying as a paid job”) they are closer to the average opinion. Taking all 8 state-
ments into account, their average position is the most extreme on the liberal side
of the map. The attitudes to the individual questions by males in the 45-55 years
age group, on the other hand, are much more similar, slightly to the conserva-
tive/traditional side of average.

This way of showing each demographic category’s position as an average across
the questions suggests an interesting decomposition of inertia for each demo-
graphic category, into a “within-category” component across the 8 questions and
a “between-category” component. The “between” component is nothing else but

Exhibit 9.3:
Asymmetric CA map of the
concatenated table of
Exhibit 9.1. The positions of
the row points (in green) are
identical to those in Exhibit
9.2, as well as the inertias
and percentages of inertia

Between- and within
category inertia
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the usual measure of inertia, which is the measure of dispersion of the demo-
graphic categories, whereas the “within” component is a measure of the disper-
sion across the 8 questions for each demographic category. The table in Exhibit
9.5 summarizes how much each demographic category contributes to the total
“within” component, measured in permills (thousandths). This table shows that
ma4 has the smallest contribution (5/1000) of all categories, and e5 an above av-
erage contribution (61/1000). The lowest two education groups and the oldest
age group, both male and female, have the highest contributions—thus e0, for
example, would show a much higher dispersion than e5 across the questions if its
8 individual points (of which it is the average) were drawn as in Exhibit 9.4. 

Both the symmetric map of Exhibit 9.2 and the asymmetric biplot of Exhibit 9.3
have their particular advantages but neither tells the analyst which categories of
the variables are driving the solution—this can be seen using the contribution bi-
plot (see Chapter 8), which multiplies the standard coordinates of the column
categories by the square roots of their corresponding masses. The contribution

Exhibit 9.4:
Map of row points

(demographic categories) of
the concatenated table,

illustrating two points, e5
and ma4, at the average

of their positions with
respect to the 8 variables

(for example, “ G” for point
e5 is the weighted average
position of e5 with respect

to the categories for
question G, using the
profile values for e5

across G)

Contribution biplot
for concatenated table

Exhibit 9.5:
Permill contributions of

each category to the
dispersion across the
questions, or “within-

category” inertia 
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biplot is shown in Exhibit 9.6—the directions of the category points are identical
to those of Exhibit 9.3 (thus, calibrations along these directions would be identi-
cal), but now the squares of their coordinates are equal to their contributions to
the respective principal axes. Immediately it is clear that variable G (“a man’s job
is to work; a woman’s job is the household”), especially categories G5 opposed to
G2, is the biggest contributor to the first (horizontal) axis—in fact, these two cat-
egories alone contribute 31% to the first axis, which is itself explaining 82.1% of
the total inertia in the data. Notice that it is the “agree” category on the right
which opposes the “strongly disagree” on the left—in Exhibits 9.2 and 9.3, which
show this category’s positional information as a scale value, the “strongly agree”
category G1 is situated further to the right than G2, as expected, but as far as con-
tributing to this axis is concerned G1 is less important, probably due to the fact
that not many people give this response.

Now that we see which categories of attitude are driving the solution, there is an
interesting interpretation of the vertical second dimension on the left hand side
of Exhibit 9.6, even though this dimension explains only 4.4% of the total inertia.
The biggest contributors are (at the top) D5, E5 and F1, expressing the strongest
support for women working, whereas at the bottom we have G4, A2, D4 and E4,
expressing moderate support for women working. The corresponding contrast is
between the divorced marital group and the female groups up to the ages of 55
on top, and the male groups up to age 45. This contrast between males and females

Exhibit 9.6:
Contribution biplot of the
concatenated table of
Exhibit 9.1, with column
coordinates equal to the
standard coordinates
multiplied by the square
roots of the respective
column masses. The gender
and age groups have been
added as supplementary
points (empty circle
symbols). The positions of
the row points (in green) are
identical to those in Exhibits
9.2 and 9.3, as well as the
inertias and percentages of
inertia
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does not exist in the older age groups on the right hand side of the display, where
the demographic groups are closer together on the vertical axis.

Exhibit 9.6 shows some additional points, for the two gender and six age groups.
In the analysis these two variables had been combined interactively to form 12
groups, but the original categories can also be displayed. From the graphical view-
point these points are just the weighted averages (centroids) of their displayed
component groups: for example, the point a1, denoting the youngest age group,
is between the female and male points for this group, fa1 and ma1. It is at the
weighted average of these two points, weighted by the numbers in the respective
female and male subgroups. Similarly, the point f for females, is at the weighted
average of the six female subgroups, fa1 to fa6.

Analytically, supplementary points define additional profiles that are not used to
establish the solution space, but are projected onto that space afterwards. The co-
ordinates of the supplementary row points in this example are obtained by com-
puting scalar products between the profile elements and the standard column co-
ordinates: Dr

−1PΓ in the notation of Chapter 8, where the profile is calculated
across all Q variables (i.e., summing to 1 across all the variables). Equivalently, fol-
lowing the way the joint display in Exhibit 9.3 was interpreted, compute for each
column variable the weighted average position of the row using its profile just
across that variable (i.e., summing to 1 across that variable), and then average
these positions (8 of them in this case) to situate the supplementary point.

1. A concatenated table is a block matrix composed of several contingency tables
cross-tabulating the same sample of cases between two sets of variables. If there
are L variables in the first set and Q in the second set, then there are L × Q
subtables constituting the concatenated table, and each subtable has the same
grand total, equal to the sample size.

2. The CA of a concatenated table is an average picture of the pairwise relation-
ships between the two sets of variables. Its inertia is the average of the inertia
of the subtables and the graphical display is the best approximation to all the
subtables. One can think of this analysis as a compromise among all possible
simple CAs of the subtables, using only one set category points for each row
and column variable.

3. The asymmetric biplot of a concatenated table usually shows the set of points in
principal coordinates close to the origin and far from the other set in standard
coordinates, in which case a separate plot of the “inner” set of points is required. 

4. Each category in principal coordinates, say a row category, is the average of a
mini-cloud of points, one point for each of the column variables. It is useful to

Supplementary points

SUMMARY:
Multiple Correspondence

Analysis Biplots I
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measure the dispersion within each of these mini-clouds because this gives in-
formation about the variance of the category across the column variables. 

5. The contribution biplot of a concatenated table displays one set of points in
principal coordinates to show their interpoint distances, and the other points
in standard coordinates multiplied by the square root of the respective masses
(these are the usual masses that sum to 1 across all the variables). The latter
set of points then indicates how they contribute to the construction of the axes
of the representation space.

6. A supplementary point is an additional row or column of data with a profile that
is displayed afterwards by projection onto the biplot. One can think of this row
or column being in the analysis from the start but with zero mass assigned to
it, hence having no influence on the solution.
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CHAPTER

Multiple Correspondence Analysis Biplots II

Multiple correspondence analysis (MCA) is the CA of a special type of concatenated
table, where a set of variables is cross-tabulated with itself. Therefore we can say
that, whereas in Chapter 9 the concatenation was made between two sets of dif-
ferent variables, in this chapter the concatenation is made of variables within one
single set. This concatenated matrix has identical rows and columns and is thus
square symmetric. It includes cross-tabulations between each variable and itself,
which are diagonal matrices of perfect association. These perfect associations
are impossible to represent in a low-dimensional display, so any biplot as de-
scribed in Chapter 9 of this particular concatenated matrix would be degraded
as far as overall quality of data representation is concerned. This problem is
avoided with a simple adjustment of the solution (or by using an alternative ap-
proach called joint correspondence analysis). In this chapter we show some pos-
sibilities for biplots in this MCA context, where the rows and columns are iden-
tical, and also how individual case points, or group averages of cases, can be
displayed.
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Using the same “women” data set for Spain as in Chapter 9, Exhibit 10.1 shows
part of the concatenated table of all the cross-tabulations of the questions with
one another (here, for the moment, we do not consider the demographic vari-
ables). This is a square symmetric block matrix, since the cross-tabulation of vari-
able q with variable s is the transpose of that of variable s with variable q. This ma-

Burt matrix
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trix is called a Burt matrix, after the psychometrician Cyril Burt, who first consid-
ered this type of data structure. 

Like the concatenated table of Chapter 9, this one has the property that each
subtable has a sum equal to the sample size, and the row margins are all the
same across the variables in each row block and the column margins are all the
same across the variables in each column block. Hence, the inertia of the Burt
matrix of, in general, Q variables is the average of the inertias in the Q 2 subta-
bles. In this eight-variable example there are eight cross-tabulations down the
diagonal, each variable cross-tabulated with itself, which are diagonal matrices
of perfect association, each having an inertia of 1 less than the number of cate-
gories, i.e. 4 in this example (a 5 × 5 diagonal matrix has four principal inertias,
each equal to 1). These high values inflate the total inertia considerably, so
we do not include them in the computation of the total inertia, preferring
to define the total inertia to be explained as the average of all the other (“off-
diagonal”) subtables, of which there are Q 2 − Q = Q(Q − 1). This is called the
adjusted inertia in MCA. In fact, since the matrix is symmetric we can compute
the adjusted inertia as the average of the upper or lower triangle of subtables,
of which there are ½Q(Q − 1). If the usual total inertia of the complete Burt
matrix, inertia(B), is available, the constant amounts due to the problematic
diagonal matrices can be simply subtracted, and the adjusted inertia can be
shown to be:

Exhibit 10.1:
Part of the Burt matrix of
the eight variables of the

“women” data set, showing
the first three variables

cross-tabulated with one
another, including the cross-

tabulations of perfect
association between each

variable and itself down the
diagonal blocks
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A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5

a1 397 0 0 0 0 19 113 42 132 91 37 91 45 154 70 ···
a2 0 932 0 0 0 18 362 126 405 21 21 405 128 359 19 ···
a3 0 0 91 0 0 2 44 22 21 2 8 44 25 13 1 ···
a4 0 0 0 598 0 40 411 42 101 4 48 422 36 88 4 ···
a5 0 0 0 0 89 45 26 5 6 7 51 26 3 6 3 ···
b1 19 18 2 40 45 124 0 0 0 0 80 34 4 3 3 ···
b2 113 362 44 411 26 0 956 0 0 0 52 673 65 154 12 ···
b3 42 126 22 42 5 0 0 237 0 0 12 82 82 59 2 ···
b4 132 405 21 101 6 0 0 0 665 0 8 182 79 378 18 ···
b5 91 21 2 4 7 0 0 0 0 125 13 17 7 26 62 ···
c1 37 21 8 48 51 80 52 12 8 13 165 0 0 0 0 ···
c2 91 405 44 422 26 34 673 82 182 17 0 988 0 0 0 ···
c3 45 128 25 36 3 4 65 82 79 7 0 0 237 0 0 ···
c4 154 359 13 88 6 3 154 59 378 26 0 0 0 620 0 ···
c5 70 19 1 4 3 3 12 2 18 62 0 0 0 0 97 ···
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(10.1)

where Q = number of variables, J = total number of categories in all the variables.
For example, in this example the total inertia of B is equal to 0.6776, but when
we make the calculation removing the contributions of the eight diagonal matri-
ces it reduces to (remembering that we combined two categories of H, so there
are 39 categories in total):

(If one computes the individual inertias in the ½ × 8 × 7 = 28 cross-tabulations be-
tween pairs of variables and averages them, the result is identical.)

In Exhibit 10.2, on the left, the first five records of the original respondent-level
data are shown, first the response categories to the eight questions, then the de-
mographic groups for gender, marital status, education, age and the gender-age
combination. On the right we see an alternative way of coding the data, where the
columns are dummy variables, one column for each category of response, and cod-
ed with a 1 to indicate the response category, otherwise 0. The matrices on the
right are called indicator matrices. The indicator matrices can be used to construct
concatenated tables: for example, if we denote the 39-column indicator matrix
for the eight questions A to H as Z, then the Burt matrix B is simply:

B = Z TZ (10.2) 

The total inertia of an indicator matrix of Q variables with a total of J categories
can be shown to be equal to a constant which depends only on J and Q :

Indicator matrix

Exhibit 10.2:
Data for first five
respondents (out of 2107)
in the “women” data set,
showing on the right the
corresponding indicator
coding of some of the
variables
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total inertia of indicator matrix = (J − Q)/Q (10.3)

In the present example, this inertia would be equal to (39 − 8)/8 = 3.875.

All the above results are relevant to understanding biplots for multiple corre-
spondence analysis (MCA). MCA is classically defined as the CA algorithm ap-
plied to either the indicator matrix Z or the Burt matrix B. It is well-known that
the two alternatives lead to exactly the same standard coordinates for the variable
categories, while the singular values in the CA of B are the squares of those in the
CA of Z. What interests us here is how to biplot the results meaningfully so that
data are successfully recovered in the graphical representation. For example, con-
sider the asymmetric map of the indicator matrix, with rows in principal coordi-
nates and columns in principal coordinates, shown in Exhibit 10.3.

In contrast to the biplots of Chapter 9, which showed relationships between the
question responses and the demographic categories, this biplot shows the rela-
tionships amongst the response categories themselves. All the extreme categories
(the 1’s and 5’s) are on the right and all the moderate categories (2’s and 4’s) and

Indicator matrix biplot

Exhibit 10.3:
Asymmetric map/biplot of
the 2107 × 39 indicator

matrix of the eight questions
of the “women” data set.

Each respondent point is at
the average of the

corresponding eight
response categories —an

example is shown of a
respondent linked to her

responses A1, B2, C1,
D1, E1, F5, G1, H1
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middles (3’s) are on the left. The main feature of the data is thus the opposition
between respondents giving extreme opinions on the issue of working women
and those with moderate attitudes. The conservative-liberal dimension in the re-
sponses is reflected in the vertical spread of the response categories, with conser-
vative views at the bottom and liberal views at the top, on both extreme and mod-
erate sides of the map.

Each row (respondent) is displayed as a green dot, and because each row of the
indicator matrix consists of 0s apart from eight 1s in the response category po-
sitions, its profile consists of 0s except for the value 1/8 in those positions. The
barycentric (or weighted average) property in the asymmetric map implies that
each row point is at the ordinary average position of its eight response cate-
gories, for example the point shown in Exhibit 10.3, which is situated towards
the extreme conservative region of the map. It is clear that in such a biplot
there is no question of calibrating axes or trying to recover the 0/1 data—this
is borne out by the fact that percentages of inertia are very low (10.6% and
8.2% respectively on the axes), which is typical if the indicator matrix is ana-
lyzed.

While it is interesting to see the whole cloud of respondent points, the biplot of
Exhibit 10.3 can be made more meaningful by representing subgroups of points,
for example the demographic groups such as male/female, or high/low educa-
tion. This is explained below using the supplementary point idea, but basically
the idea is to remove the individual case points and rather display average points
for individuals in specified demographic groups.

A biplot based on the Burt matrix is similar to the one we had for concatenat-
ed tables in Chapter 9, except for two major differences: the row and column
variables are the same, and the tables of perfect association down the diagonal
of the Burt matrix need to be avoided in some way. Our objective is to achieve
a biplot that reconstructs the profiles of all tables apart from those in the diag-
onal blocks, and we have already proposed an adjusted total inertia that omits
these cross-tabulations of perfect association. A simple adjustment of the singu-
lar values turns out to be just what is necessary so that the MCA solution best fits
the off-diagonal tables. If λ k denotes the k-th principal inertia of B, then only
those axes for which are larger than 1/Q are retained (notice that the ’s
are exactly the principal inertias of the CA of the indicator matrix). The adjust-
ment is as follows:

(10.4)

λk λk

Adjusted inertias
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The values in (10.4) effectively replace the singular values in the MCA and their
squares are the adjusted principal inertias, which can be expressed relative to the
adjusted total inertia of (10.1) to obtain percentages of inertia.6

We now have all the results necessary to define a biplot of the Burt matrix. First,
we perform the MCA of the complete Burt matrix, giving us the standard coordi-
nates identical to those used to plot the categories in Exhibit 10.3. The number
of principal inertias that satisfy > 1/8 is equal to 9. Applying the adjustment
(10.4), the first two are equal to:

These two values replace the singular values in the MCA and then the asymmet-
ric biplot in Exhibit 10.4 can be drawn, with the rows, say, in principal coordinates
(standard coordinates multiplied by the above adjusted singular values) and the
columns in standard coordinates. Their squared values quantify the amount of in-
ertia accounted for by each axis: 0.34222 = 0.1171 and 0.23262 = 0.0541, and rela-
tive to the adjusted total inertia of 0.2208 calculated previously, they explain
53.0% and 24.5% respectively.

One might ask what the benefit is of representing the categories twice, since the
row principal coordinates are at the same relative positions along the principal
axes as the column standard coordinates. The answer is that, like in any biplot, a
biplot axis can be drawn through the point C5, for example, in standard coordi-
nates, and then the profile values of all other categories on C5—except for the
categories of the variable C itself—can be lined up by their projections onto that
axis. So the fact that categories C5 and B5 are close means that all other response
categories have similar profile values on these two categories. A possibly more in-
teresting biplot of the two sets of identically labelled points is provided by the con-
tribution biplot—since we are only interested in the directions of the biplot axes,
we can change the lengths of the set of points in standard coordinates to reflect
the contributions to the principal axes.

Since the row configuration in principal coordinates gives us the essential infor-
mation for interpreting inter-category associations, we can use the column con-

λk λk

Burt matrix biplot

MCA contribution biplot
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figuration to show which variables and which categories are contributing the most
to the solution. The column points in standard coordinates are thus multiplied
by the square roots of their masses to obtain the standard MCA biplot of Exhibit
10.5. Notice that the contribution coordinates of the middle categories (3’s) are
close to the centre, so these categories play a minor role in this biplot. However,
they all contribute strongly as a group to the third dimension (not shown here).
The separation of the middle response categories is a common phenomenon in
survey data and is the theme of the case study in Chapter 14.

As we saw in Exhibit 10.3, every respondent (a row of the indicator matrix) has a
position in the biplot depending on that respondent’s particular choice of re-
sponses. Groups of respondents can be displayed by their mean positions and, op-
tionally, some type of confidence region for each mean. Geometrically, this is sim-
ply finding the average of all respondents in the lowest education group, for
example, in the display and this gives a point e0, or finding the average of all fe-
males in the age group up to 25 years, and this gives a point fa1. Analytically, this
is achieved by adding an extra row to the data matrix which accumulates all the
frequencies for males across the variables, or all females in the first age group, in

Exhibit 10.4:
Asymmetric map/biplot of
the Burt matrix: columns in
standard coordinates and
rows in principal
coordinates using adjusted
principal inertias.
Percentages of inertia on
the two axes are 53.0% and
24.5% respectively

Supplementary points
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other words, exactly the rows of the concatenated matrix in Exhibit 9.1. The pro-
files of these rows define points in the MCA space which are the means of the cor-
responding demographic group.

Exhibit 10.6 shows the demographic group means added to the display of Exhib-
it 10.5 (categories shown in contribution coordinates only). 

Because the upper right represents the most liberal attitude towards working
women and the lower right the most conservative (and lower left the more mod-
erate conservative attitude), one can see that the oldest male group and lowest ed-
ucation group are the most conservative while at the top end it is the two highest
education groups and the younger female groups that are the most liberal. Not
only have the combinations of gender and age been added but also the points
representing all males (m) and all females (f) and each age been group (a1 to
a6). A similar result to that observed in Exhibit 9.6 can be seen at the top where
the young females (e.g., fa1) tend to be strongly liberal, whereas the correspon-
ding male group (ma1) tends to the more moderate liberal side (upper left). The
point a1 representing the age group as a whole is between these two points. At

Exhibit 10.5:
MCA contribution biplot. The

row points (principal
coordinates, in green—
same as in Exhibit 10.4)

show chi-square distances
between the categories,
while the column points

(contribution coordinates, in
brown) serve as directions

for biplot axes as well as
quantifying the

contributions of the
categories to each

dimension
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bottom left we have a6 lying between fa6 and ma6 (but closer to fa6 since there
are more females in this age group) but here the difference is simply that males
are more conservative than females and there is not so much the strong versus
moderate attitude observed in the youngest groups. In fact, there is no specific
demographic group tending to the extreme conservative attitudes at bottom
right.

In summary, Exhibit 10.6 is displaying many aspects of the original 2107 × 12 data
matrix (8 questions and 4 demographic variables (see Chapter 9). In the first
instance it shows the principal axes of the question categories (green points in
Exhibit 10.5) in such a way as to maximize the inertia accounted for in all the pair-
wise relationships between the questions. Second, it shows the question cate-
gories (brown points) with lengths related to their contributions to the solution
axes and with directions that define biplot axes, onto which the green points (in
Exhibit 10.5) can be projected (excluding the green points for the same question,
because projecting a question onto itself has been purposely avoided in finding
the solution). Third, demographic groups are displayed as supplementary mean
points of the respondents in each respective group.

Exhibit 10.6:
MCA contribution biplot,
showing variables in their
contribution positions and
supplementary points added
for the demographic groups
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The MCA in Exhibit 10.6 is primarily focused on displaying the associations
among the eight questions, and secondarily on showing how the demographic
groups relate to these dimensions. Exhibit 9.6, on the other hand, is focused on
the associations between the demographic variables and the questions. From the
biplot point of view the difference can be explained as follows. In Exhibit 10.6 if
a biplot axis is drawn through G5, for example, then the projections of all the
question categories a1 to a5, b1 to b5, etc. (but not g1 to g5), will be approxi-
mating the profile values of these categories on G5—the overall quality of display
of all these profiles with respect to the biplot axes is 77.5%, the inertia explained
by the first two axes. The demographic categories can also be projected onto di-
rections such as G5, but their displayed profile values have not been specifically
optimized—the overall quality of display of these supplementary profiles is only
58.1% in Exhibit 10.6. In Exhibit 9.6, on the other hand, the projections of the
demographic categories onto the biplot axes defined by the response categories
(for example, onto G5), were optimal and there the overall quality of display was
86.5%. 

1. One of the ways of defining and thinking about MCA is as the CA of the con-
catenated table of cross-tabulations of a set of categorical variables with them-
selves. This square symmetric block matrix is called the Burt matrix. 

2. The Burt matrix includes down its diagonal blocks the cross-tabulations of
each variable with itself, and these tables inflate the total inertia of the prob-
lem, leading to low percentages of inertia explained on the principal axes if
the Burt matrix is displayed.

3. A simple adjustment of the principal inertias and the total inertia optimizes
the solution to the off-diagonal tables that cross-tabulate distinct pairs of vari-
ables.

4. Because the rows and columns of the Burt matrix are identical, the contribu-
tion biplot is particularly useful: one of the sets, for example the rows, shows
the category points in principal coordinates and so displays inter-profile dis-
tances, while the other set can display the categories both as biplot axes and
with lengths related to their contributions to the solution.

5. In all MCA biplots the respondent points can also be displayed, but it is usual-
ly more interesting to show various average positions of groups of respondents
in terms of their demographic characteristics. These are added as supplemen-
tary points.

SUMMARY:
Multiple Correspondence

Analysis Biplots II
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CHAPTER

Discriminant Analysis Biplots

Discriminant analysis is characterized by a classification of the cases in a data set
into groups, and the study of these groups in terms of the variables observed on
the cases. The ultimate aim is to discover which variables are important in distin-
guishing the groups, or to develop a classification rule for predicting the groups.
Up to now biplots have been displaying, as accurately as possible, data on indi-
vidual case points. One exception, which is a type of discriminant analysis, was in
Chapter 9 where the biplot was designed to show differences between demo-
graphic groups in the data rather than show individual differences. This biplot of
group differences did not take into account correlations between the variables,
while other approaches—such as Fisher’s linear discriminant analysis—use a dis-
tance function between cases which does take into account correlations. In this
chapter the geometry of these two approaches is explained and biplots are devel-
oped to display the cases and their group averages, along with the variables, in a
discriminant space that shows the group differences optimally. 
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A common feature of a cases-by-variables data matrix is the classification of the
cases (or the variables) into groups. For example, in the case of the Arctic charr
fish in the “morphology” data set, each fish is classified as male or female, and
also whether it was caught near the shore or in the open waters. Are these groups
of fish different in terms of their morphology? In the “women” data set we dis-
played differences between individual respondents in Exhibit 10.3, whereas in Ex-
hibit 9.3 group differences were displayed. In all of these methods where individ-
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ual-level differences are displayed, it is also possible to display aggregate-level dif-
ferences. Analyzing group differences based on multivariate data is called dis-
criminant analysis, or DA. The basic idea underlying DA is the analysis of group
means, or centroids, rather than the individual data. In other words, what we have
been doing up to now in analyzing N cases, say, can be thought of as a DA of N
groups, each consisting of 1 case, whereas now we consider the DA of G groups,
of size N1, …, NG, where N1 + ··· + NG = N. Although not so common, the same idea
can be applied to the variables: instead of analyzing all the morphometric vari-
ables individually in the “morphology” data set, for example, the variables can be
amalgamated by summation or averaging into predetermined groups.

When cases are grouped, there is a decomposition of the total variance (or iner-
tia in CA and LRA when points have different weights) into two parts: variance be-
tween groups, which quantifies how different the groups are, and variance within
groups, which quantifies how internally heterogeneous the groups are:

Total variance = Between-group variance + Within-group variance (11.1)

The greater the between-group variance, the more homogeneous the groups
must be—in the extreme case where groups consist of single cases, between-
group variance is the total variance and within-group variance is zero. At the oth-
er extreme where there is no group separation, between-group variance is zero
and the within-group variance is the total variance. The decomposition in (11.1)
is the basis of analysis of variance for one variable, whereas in our context that
variance is measured in multidimensional space, using the distance measure of
the particular method, be it PCA, CA/MCA or LRA.

Between- and 
within-group

variance/inertia

Exhibit 11.1:
The open circles represent

the centroids of three groups
(coloured in green, black and

brown). Points have a
distance di to the overall

centroid, represented by the
bold open circle. The

distance of a member of
group g to its group centroid

is dig , and the distance
from the centroid of group g

to the overall centroid is dg .
Points have masses mi and

the aggregated mass in group
g is mg , which is assigned to
the respective group centroid
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In PCA (principal component analysis) each case point typically has weight 1/N
and the weights assigned to the group average points x− 1, x− 2,..., x− G are then N1/N,
N2/N, …, NG/N. In LRA and CA/MCA the case points can have varying weights,
ri, in which case the group means are weighted by the accumulated weights of
their respective cases. Exhibit 11.1 illustrates the decomposition of variance/in-
ertia in a schematic way—here the groups are shown almost perfectly separated,
but in practice there is a high degree of overlap and the group averages, or cen-
troids, separate out much less. For example, in the “morphology” data set of
Chapter 7, where LRA was used to visualize the 75 Arctic charr fish, there were four
groups of fish defined by the combinations of sex (male/female, abbreviated as
m/f) and habitat (littoral/pelagic, abbreviated as L/P)—these were labelled in Ex-
hibit 7.3 as fL, mL, fP and mP. The total inertia in the full multidimensional space
of the LRA was equal to 0.001961. The decomposition of inertia (11.1) with re-
spect to the four sex/habitat groups turns out to be:

0.001961 = 0.000128 + 0.001833

The between-group inertia (0.000128) is only 6.5% of the total. In the Computa-
tional Appendix a permutation test is performed, showing that the between-
group differences, although small, are statistically significant (p = 0.015) and worth
investigating. A small between-group variance or inertia does not mean that there
is no meaningful separation of the groups—groups can be separable and still
have a high percentage of within-group variance. In Exhibit 7.3, however, the ob-
jective of the biplot was to separate the individual fish optimally in the two-di-
mensional view, not the groups of fish—separating the groups optimally in a low-
dimensional display is the job of DA.

The log-ratio discriminant analysis (LRA-DA) biplot of the four fish groups is-
shown in Exhibit 11.2. This is achieved by performing a regular LRA on the 4 × 26
matrix of group centroids, weighted by their respective aggregated masses (re-
member that in LRA, as in CA, the mass of a point is proportional to its marginal
sum, so that the mass ri of each fish is proportional to the total of its morpho-
metric values). The dimensionality of the four centroids is three, so that dimen -
sion reduction to two dimensions means sacrificing only one dimension. The bi-
plot shows that the main difference (along the horizontal axis) is that between
the two littoral groups on the left and the two pelagic groups on the right. The
second axis separates the females from the males, especially the female and
male littorals.

To find out which ratios might be associated with these separations, the log-ratio
of Bc relative to Jw is the longest horizontal link corresponding to the left-to-right
littoral-pelagic contrast in Exhibit 11.2. Performing a two-group t-test between the

Example: LRA-DA biplot
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pelagic and littoral groups on this log-ratio gives a difference on the log-scale of
0.083, which translates to a 8.7% increased ratio of Bc/Jw in pelagics compared
to littorals, significant at p = 0.006. As for the difference between females and
males on the vertical axis, the biplot suggests the log of Faw/Fdl to be a possible
candidate. Indeed, the t-test shows a difference between females and males of
0.073 on the log-scale, which is a 7.6% increase in the Faw/Fdl ratio in females
compared to males, with p < 0.0001.

Exhibit 7.3 was already an example of a DA between groups in a CA context, al-
though there we showed the differences between several groupings of the cases
simultaneously. To focus on only one set of groups, let us consider visualize and
quantify the differences in attitudes between the marital status groups m1 to m5:
respectively, “married”, “widowed”, “divorced”, “separated” and “single”. What we
call a CA-DA is just a CA of the concatenated tables with the 5 rows being the mar-
ital groups, and 39 columns the categories of the 8 variables (remember that H4
and H5 were combined to give one column H4,5). Exhibit 11.3 shows the CA con-
tribution biplot, comparable to Exhibit 9.6. Again, G2 is an important category
for the conservative end of the scale, typified by the group “widowed”. In Exhibit
9.6 we saw that disagreement (category 4) to statements C, D, E and G all corre-

Exhibit 11.2:
LRA-DA biplot of the four

fish groups in the
“morphology” data set, with

fish group centroids in
principal coordinates and

variables in standard
coordinates. Because of the

very small inertia of the
centroids (0.000128), they

are shown on a different
scale. 79.9% of this inertia
of the centroids is explained

in the biplot

Example: CA-DA biplot
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lated and were associated with younger males. In Exhibit 11.3 these categories are
more spread out vertically, with C4 an important category for “single” (disagree
that family life suffers when a woman works) while E4 and G4 are important for
“divorced” (disagree that running a household is just as satisfying as a paid job,
and disagree that a man’s job is to work and a woman’s is the household).

Again, even though these between-group differences are meaningful and actual-
ly highly significant statistically (chi-square tests between marital status and each
question all have p < 0.0001), the between-group inertia relative to the total is very
small. This is because the total inertia of the original data in indicator matrix
form is a fixed value and very high—see (10.3)—equal to 3.875 in this example.
The between-group inertia could only attain this value in the extreme case that
each of the five marital status groups gave identical responses within each group.
In practice, the inertias of condensed tables like this one are very much smaller
than the indicator matrix: in this example the total inertia of the five groups is
0.03554, which is only 0.917% of the total inertia of the indicator matrix. In the
Computational Appendix we explain how to perform a permutation test to quan-
tify the statistical significance of the between-group inertia.

Exhibit 11.3:
CA-DA of marital status
groups in the “women” data
set, in terms of the 8
questions on women
working. 90.7% of the
inertia is displayed here
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In the different variants of discriminant analysis described above, no mention was
made at all of the effect of correlations between variables, which can distort the
distances between group centroids. Suppose there are two groups of bivariate
points, indicated by “x” and “°” in Exhibit 11.4, with their group means in bold-
face. The coloured ellipses in the left hand picture summarize the spread of each
group, and show that the two variables are highly correlated within each group.
The two centroids are at a certain distance apart. Now suppose that the “°” group
lay in the position indicated by the dashed ellipse—its centroid is at the same dis-
tance from the “x” centroid, but the groups overlap much more. This anomaly can
be removed by performing a transformation on the variables to de-correlate them,
shown on the right hand side. The elliptical dispersion of the points is now spher-
ical and, indeed, the “°” centroid is now much further away from the “x” centroid
compared to the alternative in the dashed circle. The transformation involved is
more than a standardization of the variables, because in the left hand picture of
Exhibit 11.4 the two variables have the same variance. Rather, what is needed is a
stretching out of the points in a direction more or less at right-angles to the axis of
dispersion of the points—this is achieved by defining what is called the Maha-
lanobis distance between the cases, named after a famous Indian statistician.

Suppose C is the within-groups covariance matrix between the variables (this is de-
fined in the next section). Then the Mahalanobis distance between two points x
and y in multivariate space is 

(11.2) 

If we omit the off-diagonal covariances in C so that C is the diagonal matrix of
variances, then (11.2) is just the regular standardization of the variables. The
presence of the off-diagonal covariances in C decorrelates the variables.

Mahalanobis distance

Exhibit 11.4:
The effect of high

correlation between
variables on the measure of
between-group distance. On

the right a transformation
has been performed to

remove the correlation—
now the distances between

points are Mahalanobis
distances
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With this distance function in the space of the cases the same analysis of the cen-
troids is performed as before—this is called linear discriminant analysis (LDA),
attributed to the statistician R.A. Fisher, so sometimes called Fisher discriminant
analysis. Given an cases × variables data matrix X (I × J ) where the cases are classi-
fied into G groups, denote by xi g the vector of observations for the i-th case in the
g-th group, with weight (mass) wig. The group masses are w1, w2, …, wG (wg = Σi

wi g)
and the centroids x− 1, x− 2,..., x− G (x− g = Σi

(wi g/wg)xi g). Then the within-groups co-
variance matrix C is the weighted average of the covariance matrices computed
for the groups separately:

(11.3)

The theory of generalized PCA and contribution biplots in Chapters 5 and 6 ap-
plies here:

– Centre the group means: Y− = X− −1w T X− = (I − 1wT)X− , where X− is the matrix
of centroids in the rows, w is the vector of group weights; since the overall cen-
troid x− T (written as a row vector) of the individual-level data in X is identical
to the centroid w TX− of the group centroids, we could also write Y− = X− −1x− T.

– Transform to Mahalanobis distance and weight by the masses before com-
puting the SVD (singular value decomposition):

S = Dw
½ Y−C–½(1/J )½ = UDηV

T (11.4) 

where C−½ is the inverse of the symmetric square root of C—this is calculated
using the eigenvalue decomposition7 of C: C = XDλ XT, hence C−½ = XDλ

−½ XT
.

– Calculate the principal coordinates of the group centroids: F = Dw
−½UDη and

the coordinates of the variables for the contribution biplot (for example):
Γ = V.

This theory is illustrated with Fisher’s famous “iris” data set, available in the R
package (see the Computational Appendix). In this case, the decomposition of
variance is:

9.119 = 8.119 + 1.000

Linear discriminant
analysis (LDA)
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7. Notice that the eigenvalue decomposition of a square symmetric matrix is the same as the singular value de-
composition when the eigenvalues are all non-negative, as is the case here for the covariance matrix C. Thus
it is possible to calculate the square roots of the eigenvalues of C.



Notice that the within-group variance is equal to 1, by construction. In this ex-
ample the variance of the centroids accounts for 89.0% of the total variance, and
the separation is excellent, as shown in Exhibit 11.5. The first principal axis of
the centroids totally dominates, accounting for 99.1% of their variance. Petal
length (PetL) and peta1 width (PetW) are seen to be the most important vari-
ables on this axis.

Notice that the individual points have been added to this LDA biplot, as supple-
mentary points. To derive the coordinates of the individuals, notice from the al-
gorithm above that the principal coordinates F = Dw

−½ UDη of the group centroids
are equivalently obtained by the transformation of the column variable points V:
Y−C–½(1/J )½V. The coordinates Fcase of individual case points are obtained in a
similar way, using the centred matrix Y for the original individual-level data: 

Fcase = YC–½(1/J )½V (11.5)

In a similar fashion all the individual cases could have been added to the DA bi-
plots of Exhibits 11.2 and 11.3, using the appropriate relationship in each analy-
sis between the row and column points—this relationship is often referred to as
the transition formula between rows and columns.

1. Discriminant analysis is the analysis of group means, or centroids, of a set of
multivariate points classified into pre-specified groups.

2. The centroids have masses (weights) equal to the sum of the masses of their
members.

3. There is a decomposition of total variance/inertia of the set of points into that
of the centroids, the between-group variance/inertia, plus the weighted aver-
age variance/inertia within the groups, the within-group variance/inertia. (In-
ertia is simply the alternative term for variance when the points have different
weights; or conversely, variance is the special case of inertia when the weights
of all points are equal). 

Exhibit 11.5:
LDA contribution biplot of

Fisher “iris” data. 99.1% of
the variance of the

centroids is explained by the
first axis, on which PetL

(petal length) is the highest
contributor

SUMMARY:
Discriminant Analysis

Biplots
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4. The dimension reduction of the centroids follows the same algorithm as the
corresponding PCA, LRA or CA/MCA method.

5. Linear discriminant analysis (LDA) is also a dimension-reduction method on a
set of centroids, but uses the Mahalanobis distance based on the within-groups
covariance matrix to decorrelate the data.

6. In all these variations of DA the contribution biplot displays the centroids in
an optimal map of their positions, along with the variables so that the most im-
portant (i.e., most discriminating) variables are quickly identified.
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CHAPTER

Constrained Biplots and Triplots

The pervading theme of this book has been the visualization of the maximum
amount of information in a rectangular data matrix through a graphical display
of the rows and columns, called the biplot. Often the rows are cases, displayed as
points, and the columns are variables, displayed as vectors, and thanks to the
scalar product property the projections of row points onto axes defined by the
column vectors lead to approximations of the original data. Up to now no condi-
tion has been imposed on the solution apart from certain normalization condi-
tions on the coordinates because of the indeterminacy of the matrix decomposi-
tion. In this final chapter we look at several ways of constraining the biplot display
to have some additional condition on its solution. Imposing restrictions on a bi-
plot necessarily makes it sub-optimal in representing the original data matrix, but
in many situations such constraints add value to the interpretation of the data in
relation to external information available about the rows or the columns.
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The idea of a constrained biplot can be illustrated using the “morphology” data
set, the measurements of the 75 Arctic charr fish, and the log-ratio (LRA) biplot of
Exhibit 7.3. The LRA biplot explained 37.5% of the variance (20.9% on the first
axis, 16.6% on the second) of the 75 × 26 data matrix, which was logarithmically
transformed and double-centred, called the log-ratio transformation. The body
weight of each fish was also available, and it would be interesting to see if the body
weight is related to the solution. This is achieved using the regression biplot of
Chapter 2, where continuous variables can be added to an existing plot using

More than a
supplementary point
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their regression coefficients on the dimensions of the map. A regression analysis
is performed, of body weight as response and the fish coordinates on the two axes
as explanatory variables, and the two standardized regression coefficients are
used to draw this supplementary variable’s direction. The coefficients turn out to
be 0.116 and 0.203, with an R 2 of 0.055, and we could add a short vector to Ex-
hibit 7.3 pointing towards the upper right (0.116 on the first axis, 0.203 on the
second) to show the relationship of this additional variable to the biplot. An ex-
plained variance of 5.5% of the variable body weight, however, shows that this
variable has little relationship with the biplot. The idea of adding the body weight
variable was to see if there was any relationship between this variable and the
shape of the fish (remember that it is the shape that the biplot is visualizing, not
the size, thanks to the log-ratio transformation). For example, perhaps fish that
are generally wider than they are longer may be heavier (this is frequently the
case for humans!).

A more direct way of investigating this possible relationship is to constrain the
first dimension of the biplot to be linearly related to body weight, so that body
weight will coincide exactly with the first axis—that is, it will be 100% explained
by the first axis—while the second axis will be the optimal axis not related to
body weight but still trying to visualize the morphometric data as accurately as
possible. As a spin-off we obtain a measure of exactly how much variance in the
(log-ratio transformed) morphometric data is explained by body weight. Before
we look at how the solution is obtained technically, let us look at the result of
imposing the constraint, shown in Exhibit 12.1—body weight is now perfectly
correlated with the first axis, pointing to the right. Body weight explains 4.0%
of the variance of the morphometric variables (in the Computational Appendix
we shall show that this percentage is highly significant statistically, with a p-val-
ue of 0.001), while the second axis (which is the first axis of the unconstrained
space) explains 20.7%. A log-ratio link that is lying in this horizontal direction
and which is long suggests the ratio Bcw/Ed, caudal body width relative to eye
diameter—one might say the fat fish are heavy-tailed and beady eyed! Plotting
body weight against this ratio does show a significant correlation of 0.489, and
the slope of the relationship estimates a 1.84% increase in the ratio Bcw/Ed for
every 10g increase in body weight (since exp(0.00182 × 10) = 1.0184). The vari-
able Bd, body width at dorsal fins, is also in the same direction as Bcw, again sup-
porting the not surprising result that heavier fish are wider. In a separate analy-
sis a much weaker relationship was found with the morphological variables and
body length.

Suppose that we want to constrain the biplot to be related to an external cate-
gorical variable; for example, the four-category sex-habitat variable for the fish
data again.

Constraining by a
categorical variable

BIPLOTS IN PRACTICE

120



This turns out to be equivalent to the discriminant analysis of Chapter 11. The
sex-habitat variable is coded as four dummy variables, and it can be shown that
the constrained space is exactly the space of the four centroids, thus the LRA-DA
of Exhibit 11.2 is obtained. In a similar way, if the “women” data set is analyzed at
an individual level, that is the indicator matrix Z is analyzed, and if the solution is
constrained to be linearly related to the five dummy variables for marital status,
this results in the CA (also called CA-DA) of the aggregated data in Exhibit 11.3.

Whether it is a PCA, LRA or CA that is being performed, the imposition of the
constraint is done in the same way. We give the theory for constrained CA, also
known as canonical correspondence analysis (CCA), and then explain how this ap-
plies to the other methods. Regular unconstrained CA involves the SVD of the
matrix of standardized residuals—see (8.2):

S = Dr
−½(P − rcT)Dc

−½ = UDαV
T (12.1)

Suppose that X denotes the I × M matrix of external constraining variables, and
suppose that the columns of X have already been standardized. Notice that, be-

Exhibit 12.1:
The log-ratio biplot with the
first axis constrained to be
body weight. Rows (fish) are
in standard coordinates,
columns (morphometric
variables) in principal
coordinates. The
constraining variable body
weight follows the scale of
the rows

Constrained biplots

CONSTRAINED BIPLOTS AND TRIPLOTS

121

–2 –1 0 1 2

–
2

–
1

0
1

2
–0.04 –0.02 0 0.02 0.04

–
0
.0

4
–
0
.0

2
0

0
.0

2
0
.0

4
3

fP

mL

mL

mL

fL

mL

mL

fL

fP

fP

mP

mP

mP

mP

mP

fPmL
mL

fL

fL

fL

fL

mL
fL

fL

mL

mL

fL

mL

mL

mL

mL

fL

fL

fL

fL

mL

fL

mL

mL

fL

mL

mL

mL

mL

mL

mL

fL

fL

fL

mL

mL

mP

mL

fL

fL

mL

fL

fL

fL

mL

fL

mLfL
fLmL

mL

fL

fL

fP

mP

fP

fP

fP

fP

Hw

Bg

Bd
Bcw

Jw

Jl
Bp

Bac

Bch

Fc

Fdw

Faw

Bc

Fp

Fpl

Fal

Fdl

Hh

Hg

Ba

Jm

Hal

Hpl

Ed

HsHl

weight



cause the rows are weighted by the masses in r, all calculations of mean and vari-
ance are performed using these masses, so the columns of X have weighted mean
of 0 and weighted variance (inertia) of 1. Constraining the solution linearly
means projecting S onto the space of X. The projection matrix is defined as fol-
lows (again, the masses are taken into account):

Q = Dr
½ X(XTDr X)−1XTDr

½ (12.2)

(one can easily check that Q satisfies the condition of a projection matrix: QQ = Q,
i.e. applying the projection twice is the same as applying it once). The constrained
(or restricted) version of S is then:

S* = QS (12.3)

From here on the calculations continue just as for CA, first calculate the SVD and
then the principal and standard coordinates—see (8.2) to (8.4):

SVD: S* = UDαV
T (12.4)

Exhibit 12.2:
The possible relationship
between the log-ratio of
Bcw to Ed and body

weight that was diagnosed
in the biplot
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Principal coordinates of rows: F* = Dr
−½UDα, of columns: G* = Dc

−½VDα (12.5)

Standard coordinates of rows: Φ* = Dr
−½U,    of columns: Γ* = Dc

−½V (12.6)

The above solution has as many principal axes as there are variables (or one less
in the case of dummy variables).

There is a similar sequence of calculations to find the principal axes of the un-
constrained space. Projection takes place onto the space orthogonal to (i.e., un-
correlated with) the variables in X. This projection matrix is just I − Q, so the un-
constrained (or unrestricted) part of S is now: 

S⊥ = (I − Q)S (12.7)

(hence S has been split into two parts: S = S* + S⊥). The same steps now proceed,
where we re-use the same notation U, Dα and V for the SVD components, al-
though they are numerically different here, of course:

SVD: S⊥ = UDαV
T (12.8) 

Principal coordinates of rows: F ⊥ = Dr
−½UDα, of columns: G⊥ = Dc

−½VDα (12.9) 

Standard coordinates of rows: Φ ⊥ = Dr
−½U, of columns: Γ⊥ = Dc

−½V (12.10)

Constrained LRA is almost identical to the above, starting with the double-cen-
tred matrix of log-transformed data, and using the same row and column masses
as weights (in Chapter 15 we give the exact formulation). For unweighted LRA,
these weights would just be 1/I for the rows and 1/J for the columns. Similarly
for PCA, where the weights are generally equal, implementing the constraints in-
volves starting with the centred (and optionally standardized) matrix, and apply-
ing the above steps using weights ri = 1/I and c j = 1/J. Linearly constrained PCA
has also been called redundancy analysis in the literature.

When there are two constraining variables, they will still be perfectly explained by
the plane of the first two constrained axes, but neither variable will necessarily be
identified exactly with a principal axis. For three or more constraining variables
the two-dimensional constrained space of representation does not display the
constraining variables perfectly. In this case there are two levels of approximation
of the data matrix, as depicted in Exhibit 12.3. First the data matrix is split into
two parts: the part which is linearly related to the constraining variables, and the
part that is not (i.e., S = S* + S⊥ in the formulation above). Then dimension re-
duction takes place just as before, but in the constrained space (i.e., the principal

Decomposition 
of variance
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axes of S* are identified), with constraining variables being displayed in the usu-
al regression biplot style. Dimension reduction can similarly be performed in
the unconstrained space by identifying the principal axes of S⊥. This decompo-
sition scheme is illustrated in Exhibit 12.4 for the fish morphology analysis, where
the first dimension is constrained by body weight. Since there is only one con-
straining variable, no dimension reduction is performed in the constrained space.
Body weight is represented perfectly on the first dimension, and the second axis
of the solution is the optimal first dimension of the unconstrained data space.

In a constrained biplot there are three sets of points and the display is called a
triplot. The third set of points added to the biplot consists of the constraining vari-
ables, and they are usually displayed in terms of their regression coefficients with
respect to the dimensions of the biplot. Their directions will then be biplot axes
onto which the sample points (usually rows) can be projected to give estimates of
their values, as before. If the rows have been displayed in standard coordinates,
then the constraining variables have directions equal to their correlation coeffi-
cients with the axes.

An application to the data set “benthos” illustrates the triplot when there are sev-
eral explanatory variables. For each site the levels of six variables were measured:
total hydrocarbon content (THC), total organic material (TOM), barium (Ba),

Exhibit 12.3:
The full space

decomposition into the
constrained space (brown)

and unconstrained space
(white). Within each space

there is a part of the
variance (or inertia) that is
explained in the respective

low-dimensional displays
(area with green shading)

Triplots
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cadmium (Cd), lead (Pb) and zinc (Zn). It was preferable to log-transform these
variables because of some very large values. Exhibit 12.5 shows the resultant
triplot of the CCA restricted to the space of these six explanatory variables (in
other words, dimension reduction has been performed from a six-dimensional
space to a two-dimensional one). The sites in the triplot are in standard coordi-
nates, and the species are at weighted averages of the sites. The explanatory vari-
ables are shown as vectors with coordinates equal to their regression coefficients
on the axes (notice the different scale for these vectors). The reference stations
are much more separated from the polluted stations now that the solution is con-
strained by variables that essentially measure pollution. Barium appears to be the
variable that lines up the most with the separation of the reference stations from
the others, pointing directly away from the unpolluted reference stations. The
variable least associated with the unpolluted versus polluted contrast appears to
be total organic material.

The corresponding decomposition of inertia is shown in Exhibit 12.6, showing
that the six explanatory variables explain 65% of the total inertia in the data. Of
this, 72.5% is explained by the two dimensions of the triplot. Because the ex-
planatory variables are displayed using standardized regression coefficients, their
lengths are related to how much of their variance is explained by the axes: the
least is TOM (46% variance explained), and the most is Zn (96% variance ex-
plained).

As in multiple regression, the more explanatory variables that enter, the more
variance is explained. When the number of explanatory variables equals the num-
ber of cases 100% of the variance would be explained and then there is effective-

Exhibit 12.4:
The decomposition of
variance (or inertia), first
into the one-dimensional
constrained space of body
weight and the
unconstrained space
uncorrelated with body
weight. The constrained
space forms the first
dimension of the biplot,
which is only 4.0% of the
total variance, and the first
dimension of the
unconstrained space forms
the second dimension of the
biplot, explaining 20.7% of
the total variance 

Stepwise entry of the
explanatory variables
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ly no constraint on the data and the analysis would be a regular biplot. To reduce
the number of explanatory variables in such an analysis, a stepwise entry of ex-
planatory variables is often performed, which ensures that only variables that ex-
plain a significant part of the variance are entered. At each step the variable that
explains the most additional variance is entered and this additional variance is
tested using a permutation test. The process continues until no variables entering
produce a significant increase in explained variance. This procedure is illustrat-
ed in the case study of Chapter 15.

1. Biplots, whether they are based on PCA, CA or LRA, display the data in a re-
duced dimensional space, usually a plane, with the objective of approximating
the original data as closely as possible.

2. Often the data matrix can be regarded as responses to be explained by some
explanatory variables that are available. The original biplot dimensions are not
necessarily related to these explanatory variables, but an alternative approach
constrains the principal axes of the biplot to be specifically related to these
variables.

Exhibit 12.5:
Triplot of the “benthos”

data, showing the six
constraining variables. Of

the total inertia (0.7826) of
the species abundance

data, 65% is in the
constrained space, of which

72.5% is displayed in the
triplot

SUMMARY:
Constrained Biplots 

and Triplots
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3. The constraint is usually a linear one: the data are projected first into the con-
strained space which is linearly correlated with the explanatory variables, and
then dimension reduction takes place as before.

4. The result of such an analysis with constraints is a triplot, showing the rows and
columns of the original data matrix of interest, plus vectors indicating direc-
tions for the explanatory variables.

5. The dimensions of the residual, or unconstrained space, may also be of inter-
est. In this space variance or inertia is explained in biplots that are uncorre-
lated with the explanatory variables.

6. The initial total variance or inertia of the data matrix is decomposed first into
a constrained part (linearly related to the explanatory variables) and a resid-
ual unconstrained part (uncorrelated with the explanatory variables). Biplots
can also be constructed for the unconstrained part of the data. 

7. Explanatory variables are often entered stepwise, where the entering variable
is the one that explains the most additional variance in the data, and this
added variance can be tested for statistical significance.

8. For a single categorical variable as an explanatory variable, where the cate-
gories are coded as dummy variables, the constrained analysis is equivalent to
a discriminant analysis between the categories.

Exhibit 12.6:
The decomposition of
inertia, first into the six-
dimensional constrained
space of the explanatory
environmental variables and
the unconstrained residual
space that is uncorrelated
with the explanatory
variables. In the constrained
space the first two
dimensions explain 72.5%
of the constrained inertia,
which is 47.1% of the
original grand total
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inertia in full space

0.7826 (100%)

inertia in 

constrained space

0.5086  (65.0%)

inertia in 

unconstrained space

0.2740  (35.0%)

inertia explained by

2-d triplot 

0.3686

(72.5% of constrained space)

(47.1% of full space)

inertia explained by

remaining axes

0.1400

(27.5% of constrained space) 
(17.9% of full space) 





CHAPTER

Case Study 1: Comparing Cancer Types 
According to Gene Expression Arrays

This first case study contains many aspects of biplots treated in this book. The
context is a large data set of microarray data from tumour samples found in chil-
dren. This is a very “wide” data set in the sense that there are only 63 samples but
over 2000 variables in the form of genes expressed in the microarray experiments.
The variables are on the same continuous scale and so the regular PCA biplot of
Chapter 6 will be used to visualize the raw data. But because the samples are
grouped we shall also apply the centroid biplot described in Chapter 11 to show
separation of the tumour groups. There are two additional aspects to this case
study. First, because of the large number of variables we will be interested in quan-
tifying the contributions of each one to the biplots that we construct, with a view
to reducing the gene set to the most important ones. Second, an additional sam-
ple of 20 tumours is available, which can be used to test whether the biplot pro-
vides a prediction rule capable of classifying these additional tumours correctly.
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This data set “cancer” is taken from the book The Elements of Statistical Learning (sec-
ond edition) by Hastie, Tibshirani and Friedman and consists of a matrix of 2308
genes (columns) observed on 63 samples (rows)—see the Bibliography for a link
to the book’s website and accompanying data sets. The data arise from microarray
experiments, a technology which has become important in genomic research,

Data set “cancer”
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especially the relation of genes to various diseases. The samples are from small,
round blue-cell tumours found in children. The genes are quantified by their ex-
pression values, the logarithm of the ratio R/G, where R is the amount of gene-spe-
cific RNA in the target sample that hybridizes to a particular (gene-specific) spot on
the microarray, and G is the corresponding amount of RNA from a reference sam-
ple. The data set is called “wide” because of the large number of variables compared
to the samples. The tumours fall into four major types: EWS (Ewing’s sarcoma),
RMS (rhabdomyosarcoma) NB (neuroblastoma) and BL (Burkitt lymphoma)—in
this data set of 63 samples there are 23 EWS, 20 RMS, 12 NB and 8 BL tumours.
There is an additional data set of 20 samples from these four cancer types, which
we will use later in the case study to test a classification rule predicting cancer type.

The basic data are all on a logarithmic scale and do not require further stan-
dardization. 

Notice that these logarithms of ratios are not log-ratios in the sense of Chapter 7,
where the ratios are formed from all pairs of a set of observed variables. Because
there are 2308 variables we will not use arrows to depict each one, but grey dots

Principal component
biplot 

Exhibit 13.1:
PCA contribution biplot of

the data set “cancer”,
showing convex hulls around

the four groups and labels
at their centroids. Grey dots

indicate the 2308 genes 
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on a grey scale, where the darkness of the point is related to the gene’s contribu-
tion to the solution—see Exhibit 13.1. Because this is a PCA biplot with no dif-
ferential weights on the variables, the highly contributing genes will also be those
far from the centre of the display.

The PCA biplot does not separate the cancer types very well, as seen by the large
overlap of the four groups. Of course, this is not the objective of the PCA, which
aims to maximize the between-sample dispersion, not the between-group disper-
sion. This sample-level biplot gives a first idea of how the samples lie with respect
to one another and is useful for diagnosing unusual samples or variables, as well
as spotting possible errors in the data. The dimensionality of this 63 × 2308 ma-
trix is 62, determined by the number of samples minus 1 in this “wide” case rather
than the number of variables. The percentage of variance accounted for by the
two-dimensional solution is 28.5%. It is useful to look at the scree plot of the eigen-
values to try to assess the amount of noise in the data (Exhibit 13.2). The total
variance in this data set is equal to 982.0, with an average per dimension of
982.0/62 = 15.8. By this criterion the first 14 dimensions are above average, al-
though it is clear that the first two do separate clearly from the rest.

Exhibit 13.2:
Scree plot of the 63
eigenvalues in the PCA of
the data set “cancer”,
showing the last one equal
to 0 (there are 62
dimensions in this “wide”
data set)
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We have several tools at our disposition now to reduce the number of variables
(genes) while keeping track of the effect this has on the visualization of the can-
cer samples. A possible strategy is to reduce the gene set one at a time, removing
each time the gene that contributes the least to the solution. At each stage of the
gene removal we measure the following aspects, shown in Exhibit 13.3:

a. The total variance and the average over the dimensions (the latter will be the
former divided by 62 until the number of genes reduces below 62, in which
case the dimensionality is determined by the number of genes).

b. The number of dimensions that are above the average.
c. The percentage of variance explained by the two-dimensional solution.
d. The Procrustes statistic on the configuration of sample points, compared to

the initial solution (Exhibit 13.1)—this will quantify how much the configura-
tion is changing.

Total variance (Exhibit 13.3a) obviously decreases as genes are removed—the de-
crease is less at the start of the process when the genes of very minor contribution
to the solution are removed. The number of dimensions greater than the average
also decreases (Exhibit 13.3b) but still remains fairly high until the end of the re-

Reducing the number 
of variables 

Exhibit 13.3:
Monitoring of four statistics

as the number of removed
genes increases
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moval process. The percentage of variance on the first two axes increases as the
“noisy” part of the data is removed (Exhibit 13.3c). According to the Procrustes
analysis (Exhibit 13.3d) the two-dimensional configuration remains almost the
same even when as many as 1500 genes are removed.

We chose a solution when the Procrustes statistic reached 10%, when 2233 genes
were removed, leaving only 75 included in the PCA. Notice the gradual change in
the Procrustes statistic (Exhibit 13.3d) up to this point, then a relative stability in
the configuration at about 10% followed by more dramatic changes. Exhibit 13.4
shows the biplot with the reduced set of genes. The spread of the four groups,
from BL to RMS, is retained (see Exhibit 13.1), just slightly rotated. What is evident
here is the emergence of two groups of genes, one at bottom right which is re-
sponsible for the separation of the tumour groups, and another group at bottom
left which separates the samples into two clear clusters independent of their
groups—the only exception is an RMS tumour suspended between the two clusters.

In order to see the separation of the tumour groups better and to identify
which genes are determining the difference between them, a biplot of the
group centroids can be performed, as described in Chapter 11 on discriminant

Exhibit 13.4:
PCA biplot of the reduced
gene set (75 high-
contributing genes, that is
2233 genes omitted),
showing one set of genes (in
dashed ellipse) at bottom
right separating the group
centroids (indicated by the
labels) and another group at
bottom left that is
separating the total sample
into two distinct groups
(shown in the green
ellipses), independent of
their cancer types 

Centroid biplot —all 
variables
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analysis (DA) biplots. Because there are four centroids, the space they occupy
is three-dimensional; hence the planar display involves the loss of only one di-
mension. Exhibit 13.5 shows the centroid (or DA) biplot based on all 2308
genes.

The tumour groups are now very well separated, and the separation of the clus-
ters observed in Exhibit 13.4 is no longer present. Of the total variance of the
centroids in their full three-dimensional space, 75.6% is represented in the bi-
plot. Of the total variance of the 63 samples represented in this two-dimen-
sional biplot, 88.6% is between-group variance and 11.4% within-group vari-
ance.

Again, we are interested in reducing the number of genes to see which are the
most determinant in separating the groups. By applying the same step-by-step re-
duction in the number of genes, always removing the gene with the least contri-
bution to the group differentiation at each step, and by monitoring the percent-
age of variance displayed in the two-dimensional map as well as the proportion of
total planar variance accounted for by the between-group part. It turns out that a

Exhibit 13.5:
Centroid biplot of the four

tumour groups, using all
2308 variables. The

percentage of centroid
variance displayed is

75.6%, with between-group
variance in the plane 88.6%

of the total

Centroid biplot—
reduced set of variables
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maximum of the latter percentage is reached when we have reduced the gene set
to 24 genes, for which the solution is shown in Exhibit 13.6. The between-group
variance in the plane is 90.5% of the total, about 3 percentage points better than
Exhibit 13.5. There is only 5.1% of the centroid variance in the third dimension
now, as opposed to 24.4% in Exhibit 13.5. 

In Exhibit 13.6 we have thus achieved an optimal separation of the groups,
while also reducing the residual variance in the centroids that is in the third di-
mension. Notice the lining up of the three tumour groups BL, NB and RMS
from top left to bottom right, coinciding with the genes extending to the bot-
tom right hand side: it will be these genes that distinguish these three groups,
with increasing values from BL to NB to RMS. On the other hand the group
EWS is situated at bottom left associated with high values of the group of genes
at bottom left, and low values of the single gene that one finds at top right.
There is a group of six genes at the bottom of the display that are separated
from the group at bottom left, which no doubt not only separate EWS from the
other groups but also contribute slightly to the left-to-right separation of the other
three groups.

Exhibit 13.6:
Centroid biplot of the four
tumour groups, using 24
highest contributing
variables after stepwise
removal. The percentage of
centroid variance displayed
is 94.9%, with between-
group variance in the plane
90.5% of the total
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Exhibit 13.7:
The 20 additional tumours

in the centroid solution
space for all 2308 genes

(upper biplot), and the
reduced set of 24 genes

(lower biplot) 
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In addition to the 63 samples studied up to now, an additional sample of 20 tu-
mours was available, and the type of tumour was known in each case. We can use
our results in Exhibits 13.5 and 13.6 above to see whether accurate predictions of
the tumour types are achieved in this test data set. We do this in a very simple way,
just by situating the tumours in the two-dimensional solution space and comput-
ing their distances to the group centroids, and then predicting the tumour type
by the closest centroid. Exhibit 13.7 shows the new tumours in the solution of Ex-
hibit 13.5 using all 2308 genes (upper biplot) and then in the solution of Exhib-
it 13.6 using the reduced set of 24 genes (lower biplot). It is clear that in the
upper biplot that four of the six NB tumours will be misclassified as RMS. In
the lower biplot, the new tumours generally lie closer to their corresponding cen-
troids, with just two EWS tumours being misclassified as NB, the one on the right
being only a tiny bit closer (in the third significant digit) to the NB centroid
than to the EWS one. It is a general principle that the elimination of irrelevant
variables can improve the predictive value of the solution, and this is well illus-
trated here.

As a final remark, it is possible to improve the predictive quality of this centroid
classification procedure in two ways. First, there is some additional variance in the
centroids in the third dimension, which we have ignored here. Calculating tu-
mour-to-centroid distances in the full three-dimensional space of the four cen-
troids will improve the classification. Second, in the area known as statistical learn-
ing, a branch of machine learning, the small subset of genes used to define the
predictor space would be chosen in a more sophisticated way, using cross-valida-
tion. This involves dividing the training set of data (that is, our initial sample of 63
tumours) into 10 random groups, say, and then using 9 out of the 10 groups to
determine the subset of variables that best predicts the omitted group, and then
repeating this process omitting each of the other groups one at a time. There
would thus be 10 ways of predicting new observations, which we would apply in
turn to the test set (the 20 additional tumours), obtaining 10 predictions for each
new tumour from which the final prediction is made by majority “vote”. If these
two additional improvements are implemented in our procedure it turns out that
we can predict the group membership of all 20 tumours exactly.

We have shown how biplots based on principal component analysis of both indi-
vidual-level and aggregate-level data can be used to identify natural groups of ob-
servations in a large data set as well as distinguish between existing known groups.
With respect to this data set which has a huge number of variables compared to
observations:

1. In both the individual- and aggregate-level analyses, it is useful to reduce the
number of variables to a smaller set that is the most determinant in showing

Classification
of additional samples

Improving prediction

SUMMARY
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respectively (i) the patterns in the individual-level data, and (ii) the separation
of the known groups.

2. One way of eliminating variables is to calculate each variable’s contribution to
the solution (a planar biplot in our application). The variable with the least
contribution is eliminated, and the procedure is repeated over and over again
until a small subset is found.

3. We decided to stop the variable elimination process in the individual-level
analysis when the Procrustes statistic rose to 10%—this was an ad hoc decision,
but was based on observing the evolution of the Procrustes statistic as variables
were eliminated. This statistic increased very slightly and slowly up to this
point, but reducing the variables beyond this stage the solution started to
change dramatically

4. In the case of the aggregate-level analysis, we monitored the ratio of between-
group variance to total variance in the low-dimensional solution as variables
were eliminated, and stopped when this reached a maximum. 

5. In the centroid analysis, the eventual space based on the smaller set of vari-
ables can be used to classify new observations, by calculating their distances in
the solution to the centroids and then choosing the centroid that is closest as
the group prediction.
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CHAPTER

Case Study 2: Positioning the “Middle” 
Category in Survey Research

Offering a middle alternative, for example “neither agree nor disagree”, as a re-
sponse on an attitudinal scale can have various consequences in survey research.
In this case study, after a general investigation of a large survey data set, special at-
tention is given to the middle categories, specifically how they associate (a) with
one another, (b) with the “adjacent” categories between which they are supposed
to lie and (c) with demographic characteristics. Missing responses enter our study
in a natural way as additional non-substantive responses and we can also see how
these are interrelated and related in turn to the substantive responses. This ap-
proach is illustrated with the ISSP data on attitudes to women working (this is an
expanded version of the data set “women” used in Chapter 9).
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The data set “women” was introduced in Chapter 9, consisting of eight questions
eliciting attitudes about working women. In that chapter, to simplify the explana-
tion, data from only one country, Spain, were considered and all respondents
with some missing data were eliminated. In this case study all the data from 46 638
respondents in 32 countries are considered, and no respondents are eliminated
—this data set is referred to as “womenALL”. Exhibit 14.1 lists the countries sur-
veyed and the abbreviations used in the graphics.

Data set “womenALL”
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To get a broad overview of the differences between countries, a concatenated ma-
trix (see Chapter 9) is assembled, cross-tabulating the countries with each of the
eight questions.

Since each question has five substantive response categories plus a missing cate-
gory, there are six categories per question, and the concatenated matrix has 32
rows and 48 columns. The CA asymmetric map/biplot is shown in Exhibit 14.2,
with a separate amplification of the row points, which as usual are bunched up
near the middle of the biplot. The missing categories of response, labelled AX to
HX, are all in a group near the origin of the biplot. So too are the middle response
categories (the category 3’s), which we have labelled AM to HM here. Generally all
the extreme response categories (1’s and 5’s) are to the left of centre, while the
moderate response categories (2’s and 4’s) are to the right. The conservative-to-
liberal attitude scale runs from bottom to top, with strong agreement to state-
ments B, C, D and G at bottom left (see chapter 9 for the statement wording).
Brazil is in an isolated position, showing that its respondents tend to use the ex-
treme conservative response categories. China is also at the conservative extreme
of these countries, but using more of the moderate response categories. At the
top Denmark is at the most liberal position, followed by Austria and Sweden, with
the Swedish using the more moderate responses.

This aggregate-level picture of the countries does not reflect associations between
response categories at the level of the individual respondent. Applying MCA to
the original 46,638 × 8 matrix gives the biplot in Exhibit 14.3. The result is typi-
cal of social-science applications, with all the non-substantive missing response
categories separating out (bottom left) and opposing the substantive responses
which themselves split into the moderate and middle categories (upper left) and
the extreme categories (upper right). The fact that these three types of response

Exhibit 14.1:
Countries surveyed in the

third Family and Changing
Gender Roles survey of the
ISSP in 2002 (former West
and East Germany are still

sampled separately for
research purposes). The

abbreviations are used in
subsequent biplots 

Cross-national
comparison using CA

biplot of concatenated
tables

Multiple correspondence
analysis of 

respondent-level data
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AU Australia SE Sweden SK Slovakia 
DW Germany (west) CZ Czech Republic CY Cyprus
DE Germany (east) SI Slovenia PT Portugal
GB Great Britain PL Poland RC China
NI Northern Ireland  BG Bulgaria DK Denmark
AT Austria NZ New Zealand CH Switzerland
US USA RP Philippines FL Belgium (Flanders) 
HU Hungary IL Israel BR Brazil
IE Ireland JP Japan SF Finland
NL Netherlands ES Spain TW Taiwan
NW Norway LV Latvia



Exhibit 14.2:
CA biplot of the
concatenated countries by
categories matrix, and a
separate plot of the
countries alone
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(missing, moderate and extreme) group together means that the categories with-
in each group associate strongly: for example, someone who gives a missing re-
sponse on one question is likely to give more missing responses on others, and
similarly for the moderate and extreme responses. The respective groupings of
the extreme and moderate responses, irrespective of the wording of the question,
are stronger than the underlying attitude scale. Each respondent is displayed by
a dot at the average position of his or her eight response categories. Thus the
thick band of points at the top correspond to those with no missing values, fol-
lowed by bands of respondents with increasing numbers of missing values as we
move towards the bottom left.

Since we are more interested in the substantive responses, we can eliminate the
strong effect of the missing categories by performing a so-called subset analysis.
This is variant of correspondence analysis which visualizes a subset of points while
maintaining the original geometry of the complete set: the centre, masses and
metric of the space remain the same, what changes is the elimination of certain
points from the dimension reduction process (this is not the same as declaring
the missing categories as supplementary points, which would change the geome-
try of the active data set). Exhibit 14.4 shows the result of omitting the missing cat-
egories in the subset analysis—as in Exhibit 14.2, the first (horizontal) axis op-
poses extreme response categories on the left and moderate categories on the
right. But now the attitude scale itself appears vertically with conservative re-
sponse categories lower down and liberal responses at the top. Exceptions are

Exhibit 14.3:
MCA biplot of the

respondent-level data: each
dot represents one of the

46,638 respondents at 
the average position of his

or her eight response
categories 

Subset multiple
correspondence analysis

eliminating missing
categories

BIPLOTS IN PRACTICE

142

–6 –4 0 2

–
5

–
3

–
2

–
1

0
–
4

–2 4

missing categories

extreme categories

moderate & middle 

categories

A1

A2AMA4

A5

AX

B1

B2BMB4

B5

BX

C1

C2CM
C4

C5

CX

D1

D2DMD4

D5

DX

E1

E2EME4

E5

EX

F1

F2FMF4

F5

FX

G1

G2GMG4

G5

GX

H1

H2
HM

H4

H5

HX



questions F (“work is best for a woman’s independence”) and H (“working women
should get paid maternity leave”), where opinions appear unrelated to the gen-
eral scale of attitude towards whether women should work or not.

In Exhibit 14.4 the middle (“M”) categories appear grouped between the moder-
ate ones, as one might expect. If we bring in the third dimension of the subset
analysis, however, these categories are seen to separate as a group, and do not lie
between the “2”s and the “4”s. Exhibit 14.5 shows the planar view of the third di-
mension (horizontal) and second dimension (vertical), and the “M”s no longer
lie in their expected positions on the scale. For question responses that are con-
sistent with an underlying ordinal attitudinal scale the MCA configuration should
take the approximate form of polynomials of increasing order, as shown in Ex-
hibit 14.6 (usually the scale appears on the first dimension, and the polynomials
are with respect to the first dimension—in this example, the scale is found on the
second dimension because of the strong extreme versus moderate response ef-
fect). Exhibit 14.4 fits the pattern on the left in Exhibit 14.6, while all the re-
sponse categories except the middle ones in Exhibit 14.5 fit the pattern on the

Exhibit 14.4:
Subset MCA biplot of the
respondent-level data: each
dot represents one of the
46,638 respondents at the
average position of his or
her eight response
categories 
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Exhibit 14.5:
Subset MCA biplot of the

respondent-level data,
showing dimension 2

vertically, as in Exhibit 14.4,
but dimension 3

horizontally. The separation
of the middle categories

(encircled) is now apparent

Exhibit 14.6:
General patterns in Exhibits

14.4 and 14.5 (for
questions B, C, D and G, for

example, all worded
negatively towards working

women), showing their
respective quadratic and

cubic patterns 
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right in Exhibit 14.6. What we are discovering is that the middle response cate-
gories are partially fitting into the attitudinal scale but show a distinct separation
as a different response type, which might be a type of non-response or so-called
“satisficing” effect, which is the respondents’ way of giving an acceptable answer
without having to spend time and effort forming an opinion.

If we look at the numerical diagnostics of the subset MCA, it turns out—not un-
expectedly—that the middle response categories are somewhat correlated with
dimension 3 (as seen in Exhibit 14.5), but these categories will have parts of their
variance on many other dimensions too. If we really want to study the effect of the
middle response, we need to isolate exactly where the middle categories are.
Then we can see if any demographic characteristic is linked to those dimensions.
There are two ways we can do this: using subset analysis again, but just on the mid-
dle categories, or using canonical correspondence analysis (CCA), where we de-
fine “middleness” as an explanatory variable. A difference between the two ap-
proaches will be that the subset analysis will focus on all the dimensions of
“middleness”, of which there are 8 since there are 8 questions, so that dimension
reduction will be necessary, whereas the way we implement the CCA just one di-
mension of “middleness” will be imposed as a constraining variable on the solu-
tion, which makes it easier to relate to the demographics.

To implement the CCA we create the explanatory variable “number of middle re-
sponses” by counting, for each respondent, how many middle responses are in his
or her response set. This variable can vary from 0 to 8. Since this is the addition
of the 8 columns of the 46,638 × 48 indicator matrix, the variable we are creating
is actually the centroid of the 8 middle response points. It is this centroid on
which the CCA will focus. In fact, we can do exactly the same for the missing val-
ues: instead of performing a subset MCA, we can add a variable “number of miss-
ing responses” and then use both of these as explanatory variables, thus giving a
two-dimensional restricted space of middles and missings. This will allow a con-
venient investigation of possible associations with the demographics. The set-up
for what amounts to a canonical MCA is shown in Exhibit 14.7.

The canonical MCA with the two constraining variables is shown in Exhibit 14.8.
The missing count variable is almost exactly aligned with the horizontal first di-
mension, and the middle count variable slightly more than 90 degrees away in a
vertical direction. The 46,638 respondents occur in only 1 + 2 + ··· + 9 = 45 dif-
ferent combinations of the two constraining variables, which are indicated by cir-
cles with an area proportional to the corresponding number of respondents. Thus
the largest circle at bottom left corresponds to 0 middles and 0 missings (3107 re-
spondents), and the next circle vertically corresponds to 1 middle and 0 missings
(2354 respondents) up to the topmost circle for all 8 middles (254 respondents).

The dimensions 
of “middleness”

Canonical 
correspondence analysis
to focus on middles and
missings
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Moving horizontally we have 1 missing, 2 missings, and so on, with a triangular ma-
trix structure of the respondents due to the near orthogonality of the two variables.

To visualize the demographic groups, centroids are calculated of respondent
points in Exhibit 14.8 for each country (Exhibit 14.9) and for each of the age
and education groups (Exhibit 14.10). The biggest dispersion is seen in Exhib-

Exhibit 14.7:
Data set-up for canonical

MCA biplot, showing first 10
rows of the original data on

the left and recoded data on
the right used for the

analysis. The columns #M
and #X are the sums of
the M and X columns of

the indicator matrix, 
i.e. the counts of middle

and missing responses
respectively 

Exhibit 14.8:
Canonical MCA of the
indicator matrix with

constraining variables the
counts of middles and

missings (#M and #X).
The respondents pile up at

discrete positions at the
centres of the circles, the

areas of which indicate the
frequencies 
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A B C D E F G H A1 A2 AM A4 A5 AX B1 B2 BM B4 B5 BX · · · #M #X

4 2 2 3 3 2 3 4 0 0 0 1 0 0 0 1 0 0 0 0 · · · 3 0
1 5 5 5 1 1 5 2 1 0 0 0 0 0 0 0 0 0 1 0 · · · 0 0
2 3 2 3 2 2 4 2 0 1 0 0 0 0 0 0 1 0 0 0 · · · 2 0
4 2 1 4 4 4 4 4 0 0 0 1 0 0 0 1 0 0 0 0 · · · 0 0
3 2 2 3 2 4 3 2 0 0 1 0 0 0 0 1 0 0 0 0 · · · 3 0
4 9 2 3 2 3 3 5 0 0 0 1 0 0 0 0 0 0 0 1 · · · 3 1
2 3 3 3 3 2 3 3 0 1 0 0 0 0 0 0 1 0 0 0 · · · 6 0
1 5 4 4 3 2 4 2 1 0 0 0 0 0 0 0 0 0 1 0 · · · 1 0
4 2 2 2 4 3 3 1 0 0 0 1 0 0 0 1 0 0 0 0 · · · 2 0
5 1 1 1 1 4 2 2 0 0 0 0 1 0 1 0 0 0 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · ·
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it 14.9 for the countries, with Australia and the Netherlands showing the high-
est use of the middle responses, and Finland the highest on missing responses.
Portugal and China give missings and middles the least amongst this group of
countries. In Exhibit 14.10 respondents which have their education group miss-
ing (E9, 520 cases) are far in the direction of missing responses, while the lowest
education group E0 is less than average on middles; the highest education groups
E4 and E5 are slightly less than average on missings. The age groups A2, A3 and
A4 (26–55 years) are also slightly less than average on missings, while the youngest
and oldest groups are slightly higher on average, especially A6 (66+ years). There
is no age or education group with a tendency to use the middle responses.

In contrast to the canonical analysis which focuses on a single dimension of mid-
dle responses, a subset analysis focuses on the dimensions of all 8 middle cate-
gories. Exhibit 14.11 shows two views of the subset MCA of the middle categories,
in standard coordinates. The first dimension (horizontal dimension in left hand
map) puts all middle categories on the right, so this dimension will coincide with
the biplot arrow “#M” in Exhibits 14.8–14.10 which simply counts the middles.
The second and third dimensions, in the right hand map of Exhibit 14.11, shows

Exhibit 14.9:
Country centroids of the
respondents in Exhibit 14.8

Subset analysis 
of middle categories
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that there is a clustering of the middle categories of the first three questions AM,
BM, CM (top left), then those of the next four questions DM, EM, FM, GM (top
right), and quite separately the last question’s middle category HM at the bottom.
The right hand map of Exhibit 14.11 contains information about grouping of
middle responses that was not evident in the canonical MCA. The fact that the
middle categories group together according to the sequences of questions might
indicate a certain type of behaviour on the part of the respondents where they
give middle responses to sequences of questions. We can investigate if there is any
demographic variable that coincides with this phenomenon.

As in all MCA analyses, each respondent has a position in the map, so any de-
mographic grouping can be represented by a set of centroids. Exhibit 14.12
shows the average positions of the 32 countries. Corresponding to the slightly di-
agonal orientation of the two clusters at the top of the right hand map of Exhibit
14.11, there are two sets of countries extending from bottom left to top right, in-
dicated by two dashed lines. These correspond to countries that have more than
average middle responses on the two clusters of questions, whereas their vertical

Exhibit 14.10:
Education and age group

centroids of the respondents
in Exhibit 14.8
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position depends on the number of middle responses on the isolated question
H. Australia and the Netherlands, for example, which we previously saw had a
high level of middle responses, both have a particularly high level on question
H: going back to the original data, 20.5% of Australians and 13.8% Dutch re-
sponded HM, whereas for the other 30 countries the average response rate for
this category was only 3.9%.

We have shown how multiple correspondence analysis and its subset and canoni-
cal variants can allow a detailed investigation of the patterns of response in a large
data set from a social survey. Based on similar studies that we have conducted on
several different survey data sets of this type, from the ISSP and Eurobarometer,
several results that emanate here appear to be typical:

1. In the analysis of individual responses, the missing response categories domi-
nate. This is partially due to responses sets (all missings) by many respondents,
which inflate the associations between the missing categories, but this associa-
tion is strong even when the response sets are eliminated.

Exhibit 14.11:
Subset MCA of the 8 middle
response categories,
dimensions 1 by 2 (left) and
dimensions 3 by 2 (right).
Three clusters are evident in
the right hand map

SUMMARY
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2. Although the middle response categories might appear to be positioned “cor-
rectly” amongst the moderate categories in the initial best planar view of the
data, inspection of further dimensions shows them to be associated among one
another, and separated from their expected positions between the moderate
categories. Again, we have found that this phenomenon persists even when re-
sponse sets (all middles) are removed.

3. A middle response on one question is not generally associated with non-re-
sponse on other questions. It seems that, if the middle response is used as a sat-
isficing alternative to a non-response, there are some respondents that gener-
ally give just middle responses while there are others that give just
non-responses. 

4. Canonical MCA can be used to isolate a single dimension corresponding to the
middle responses, similarly for the missing responses (or whatever responses
the researcher is interested in). The positions of the respondents on these di-
mensions can be averaged within demographic groups to investigate their pos-
sible dispersions on these dimensions.

Exhibit 14.12:
Centroids of the countries in

the right hand map of
Exhibit 14.11. dashed lines
indicate a set of countries

with more than average
middle responses on the

first three questions 
(on left) and on the next

four questions (on right),
with vertical spreads

depending on the incidence
of middle response on the

last question
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5. Subset MCA can be used to study the middle responses in more detail. As many
dimensions as there are middle responses are analysed, so that dimension re-
duction is necessary to create a map. Generally, the first dimension in this
analysis corresponds to the single constraining variable of “middleness” in the
canonical MCA, so that the following dimensions reveal the more detailed pat-
terns in middle response.

6. The same approach can be used to investigate patterns of any particular re-
sponse category or categories. For example, the dimensions of the set of ex-
treme response categories (1’s and 5’s) could be studied on their own and re-
lated to the demographic characteristics.
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CHAPTER

Case Study 3: The Relationship between Fish
Morphology and Diet

The multivariate nature of ecological data is illustrated very well in the morpho-
logical data on Arctic charr fish, described in Chapters 7 and 12. Apart from the
fish morphology, an analysis of the stomach contents of each fish was performed
to characterize the fish’s diet. Because the diet is measured as a set of percentages
of the stomach contents, correspondence analysis is an appropriate way of visual-
izing the diet variables. Now there are two multivariate observations on each fish:
the set of morphological measurements as well as the set of dietary estimates. Our
aim will be to decide if there is any non-random relationship between the mor-
phology and the diet, and—if there is—to try to characterize and interpret it. Be-
cause we used log-ratio analysis in Chapter 7 to visualize the morphological data,
we will maintain this approach while focusing the visualization of the morphology
on its relationship to the dietary composition. 

Contents

Data set “fishdiet”  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Correspondence analysis of “fishdiet” data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
How is the diet related to habitat and sex?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Canonical log-ratio analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Relationship of morphology to diet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Permutation test of morphology-diet relationship  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
SUMMARY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

The data set “morphology” was introduced in Chapter 7, consisting of 26 meas-
urements on each of 75 Arctic charr fish, as well as two dichotomous variables in-
dicating the sex (female/male) of each fish and their habitat (littoral/pelagic).
In addition, another set of data is available based on an analysis of the stomach
contents of each fish—these are estimated percentages of the contents, by vol-
ume, that have been classified into 6 food sources:

Data set “fishdiet”
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PlankCop plankton – copepods InsectLarv insects – larvae
PlankClad plankton – cladocerans BenthCrust benthos – crustaceans
InsectAir insects – adults BenthMussl benthos – mussels

A seventh category Others includes small percentages of other food sources. The
data for the first 10 fish are given in Exhibit 15.1.This data set, called “fishdiet”
constitutes a second matrix of data on the same individuals, and can be consid-
ered as explanatory variables that possibly explain the morphological data.

Seeing that the data are compositional, one would immediately think of using log-
ratio analysis (LRA), but the large number of zeros makes this approach imprac-
tical. Correspondence analysis (CA) is a good alternative but there are two possi-
ble approaches here. The first would be to consider just the seven measured
percentages—since CA converts the data to profiles, this would re-express the val-
ues relative to the actual stomach contents; for example, the first fish in Exhibit
15.1 has only 40% stomach full, and PlankClad is 25/40 of this total and 15/40 In-
sectAir, which would be the profile values in CA. The second is to add a column,
called “Empty” in Exhibit 15.1, which quantifies the emptiness of the stomach,
that is 100 minus the sum of the seven measured values. By including the empty
component, the sums of each of the rows is now a constant 100% and CA will treat
the data in their original form.

Exhibit 15.2 shows the two alternative CAs together for comparison, where we
have excluded one fish with zero stomach contents, which would not be a valid
observation for the first analysis (all margins have to be strictly positive for CA).

Correspondence analysis
of “fishdiet” data

Exhibit 15.1:
Part of data set “fishdiet”,
showing the first 10 of the
Arctic charr fish. Data are

percentages of stomach
contents of different food

sources. A column
“Empty”has been added

as 100 minus the sum of
the percentage values in the

first seven columns—for
example, fish 28 had the

whole stomach full, so
“Empty” is 0. The

supplementary variables sex
(1 = female, 2 = male)
and habitat (1 = littoral, 

2 = pelagic) 
are also shown
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Fish no. PlankCop PlankClad InsectAir InsectLarv BenthCrust BenthMussl Others Empty Sex Habitat

19 0 25 15 0 0 0 0 60 1 2

23 0 0 0 20 47 8 0 25 2 1

24 0 0 0 8 32 0 0 60 2 1

25 0 0 0 10 22 18 0 50 2 1

27 0 0 0 2 4 4 0 90 1 1

28 0 0 0 10 55 35 0 0 2 1

30 0 0 0 20 44 6 0 30 2 1

31 0 0 0 15 25 40 0 20 1 1

33 0 65 0 0 0 0 0 35 1 2

34 0 48 0 2 0 0 0 50 1 2
· · · · · · · · · · · 
· · · · · · · · · · · 
· · · · · · · · · · · 



Exhibit 15.2:
CA biplots of the “fishdiet”
data, asymmetric scaling
with fish in principal
coordinates and food
sources in standard
coordinates: (a) the biplot is
the regular CA of the first
seven columns of Exhibit
15.1, while (b) includes
column 8 ( Empty). Fish
are labelled by their sex-
habitat groups. Total
inertias in the two analyses
are 1.751 and 1.118
respectively
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There are only a few fish with some PlankCop, generally at low percentages, but
these tend to be associated with less full stomachs so that in relative terms the
presence of PlankCop is accentuated in the CA in Exhibit 15.2a. Otherwise, there
is an opposition between those with relatively more PlankClad and InsectAir (bot-
tom right of Exhibit 15.2a) compared to those with relatively more BenthCrust and
BenthMussl (to the left). When Empty is included (Exhibit 15.2b), it has a higher
mean than the other variables, and the centroid of the display moves close to it.
Projecting the fish onto the biplot axis defined by BenthMussl and Empty implies
that there is an inverse relationship between the two columns, shown in the up-
per scatterplot of Exhibit 15.3. Expressed another way, the proportion of benthic
mussels increases with stomach fullness. The coincident directions of InsectLarv

Exhibit 15.3:
Scatterplots of two pairs of

variables, showing the
negative relationship

between BenthMussl
and Empty and positive

relationship between
InsectLarv and

BenthCrust
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and BenthCrust imply a positive relationship between these two food sources, as
shown in the lower scatterplot of Exhibit 15.3. 

These two CA biplots display the data in different ways and the biologist needs to
decide if either or both are worthwhile. The question is whether the percentages
are of interest relative to actual stomach contents, or on their original percentage
scale relative to the whole stomach. For example, the separation of the group of
fish in the direction of PlankCop in Exhibit 15.2a is non-existent in Exhibit
15.2b—relative to what is in the stomach, this group of fish distinguishes itself
from the others, but not so much when seen in the context of the stomach as a
whole.

As described in Chapter 12, constraining by a categorical variable is equivalent to
performing a type of centroid discriminant analysis, illustrated in Exhibit 11.2 for
the morphological data. We repeat that analysis on the “fishdiet” data, with the
groups defined by the interactively coded sex-habitat variable with four categories:
fL, mL, fP and mP. Exhibit 15.4 shows the resulting biplot. As in the morphological
analysis of Exhibit 11.2, the habitat differences are more important than the sex
differences. Contrary to the morphological analysis, the diet difference between
sexes in the pelagic group is bigger than that in the littoral group. The lack of dif-
ference between female and male littoral fish (fL and mL) is seen clearly by the sin-
gle line of individual points to the top left of the biplot, in the direction of Ben-
thCrust, BenthMussl and InsectLarv; while on the right there is a separation into two
“streams”, mainly female pelagic (fP) to upper right, in the direction of PlankCop,
and mainly male pelagic (mP) to lower right, in the direction of PlankClad and In-
sectAir. There are some exceptions: for example, some fP points are in the lower
right group, and there are few male and female littoral fish on the right.

The unconstrained CA in Exhibit 15.2b has total inertia equal to 1.118 and the
part of this inertia explained by the sex-habitat variable is equal to 0.213, or 19.0%
of the total. A permutation test shows that the relationship between diet and sex-
habitat is highly significant: p < 0.0001. This part of inertia forms the total inertia
in the analysis of Exhibit 15.4, which explains almost all of it (99.6%) in two di-
mensions (the analysis of the four centroids is three-dimensional, so the 0.4% un-
explained is in the third dimension).

In Chapter 7 we analyzed the morphological data set on its own using the log-ra-
tio approach. We now want to relate the morphological data to the diet data, in
other words constrain the dimensions of the log-ratio analysis to be related to the
diet variables, which we could call canonical, or constrained, log-ratio analysis (CLRA).
It is useful here to give the equations of the analysis, putting together the theo-
ries of Chapters 7 and 12.

How is the diet related 
to habitat and sex?

Canonical log-ratio
analysis
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Exhibit 15.4:
CA discriminant analysis of

the sex-habitat groups
(equivalent to CCA with
categorical sex-habitat

variable as the constraining
variable). The centroids of
the four groups are shown

in the upper plot. The
individual fish, which are

contained in the box shown
in the biplot, have been

separated out in the plot,
with enlarged scale for sake

of legibility. Total inertia of
the four centroids 
is equal to 0.213 
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In Chapter 7 log-ratio analysis was defined as the weighted SVD: S = Dr
½ YDc

½ =
UDϕV

Tof the double-centred matrix: Y = (I − 1rT)L(I − 1cT)T of logarithms:
L = log(N) of the data N (see (7.1)–(7.4)). The dimensionality of this analysis is
equal to 25, one less than the number of morphometric measurements. The con-
straining variables are the 7 diet variables, without the “Empty” column (here it
makes no difference whether it is included or not as an explanatory variable).
The matrix X consists of the 7 diet variables after they have been standardized.
Then (12.2) defines the projection matrix as Q = Dr

½ X(XTDr X)−1X TDr
½ and the

matrix S is projected onto the space of the diet variables by S* = QS. The un-
constrained component of S in the space uncorrelated with the diet variables is
S⊥ = (I − Q)S (see (12.3) and (12.7) respectively). The dimensionality of S* is 7
in this case. The SVD of S* is performed in the usual way, with subsequent com-
putation of principal and standard coordinates.

The first interesting statistic from this constrained log-ratio analysis is the part of
the morphological log-ratio variance that is explained by the diet variables: it
turns out to be 14.5%, so that 85.5% is not related—at least, linearly—to the diet.
Our interest now turns to just that 14.5% of the explained variance, 0.0002835,
compared to the total variance of 0.001961 of the morphological data. This vari-
ance is now contained in a 7-dimensional space, and our view of this space is, as
always, in terms of the best-fitting plane. The principal axes of this plane account
for small percentages of the total (original) morphological variance (5.6% and
4.0% respectively), but for the moment we focus on how the constrained variance
(0.0002835) is decomposed, and the axes account for 38.9% and 27.6% of that
amount, which is the part of the variance that interests us. Exhibit 15.5 shows the
biplot of these first two constrained axes.

In Exhibit 15.5 the fish points are in standard coordinates and the morphologi-
cal variables in principal coordinates. As in Exhibit 7.3, the dispersion of the fish
points is so low that the coordinates have to be scaled up to appreciate their rel-
ative positions. The diet variables are displayed according to their correlation co-
efficients with the axes, and have also been scaled up (by 2) to facilitate their dis-
play. As explained in Chapter 12, there are two ways to show the diet variables:
using the correlation coefficients as in Exhibit 15.5, or in terms of the coefficients
of the linear combinations of the variables that define the axes. For example, axes
1 and 2 are in fact the linear combinations:

Axis 1 = −0.761 × PlankCop + 0.272 × PlankClad − 0.159 × InsectAir + 0.103 ×
InsectLarv + 0.071 × BenthCrust + 0.388 × BenthMussl + 0.217 × Others

Axis 2 = 0.280 × PlankCop − 0.076 × PlankClad − 0.689 × InsectAir + 0.140 ×
InsectLarv + 0.505 × BenthCrust − 0.188 × BenthMussl + 0.116 × Others

Relationship 
of morphology to diet

CASE STUDY 3: THE RELATIONSHIP BETWEEN ARCTIC CHARR FISH MORPHOLOGY AND DIET

159



where the axes (that is, the coordinates of the fish on the axes) as well as the vari-
ables are all in standard units, that is with standard deviations equal to 1.

Because the diet variables are correlated, the variable-axis correlations are not the
same as the above coefficients, which are regression coefficients if the axes are re-
gressed on the variables. 

As explained in Chapter 12, the above equations are exact (that is, R 2 = 1 if one
were to perform the regression), but thinking of Exhibit 15.5 from the biplot
viewpoint, the R 2 of each diet variable can be computed as the sum of squared
correlations to measure how accurately each variable is displayed:

PlankCop: (−0.860)2 + (0.113)2 = 0.752
PlankClad: (0.055)2 + (−0.447)2 = 0.203
InsectAir: (−0.142)2 + (−0.806)2 = 0.669
InsectLarv: (0.260)2 + (0.370)2 = 0.205
BenthCrust: (0.336)2 + (0.610)2 = 0.485
BenthMussl: (0.496)2 + (-0.052)2 = 0.249
Others: (0.299)2 + (0.083)2 = 0.096

Exhibit 15.5:
Weighted LRA biplot

constrained by the fish diet
variables, with rows (fish) in

standard coordinates and
columns (morphological

variables) in principal
coordinates. The

coordinates of the diet
variables have been

multiplied by 2 to make
them more legible (use the

green scale for these
points). 66.5% of the

constrained variance is
accounted for (but only

9.6% of the original total
variance)
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PlankCop and InsectAir are explained more than 50%—this means that we could
recover their values with an error of less than 50% by projecting the fish points
onto the biplot axes that they define in Exhibit 15.5. Variables such as PlankClad,
InsectLarv and BenthMussl are poorly reconstructed in the biplot. But remember
that it was not the intention of this biplot to recover these values—in fact, this was
the aim of the correspondence analysis of Exhibit 15.2. The aim here is rather to
recover the values of the morphological variables that are directly related to diet,
in a linear sense.

In order to test for significance of the morphology–diet relationships we are de-
tecting, a permutation test can be performed as described previously: use the in-
ertia explained by the diet variables as a test statistic, and then randomly permute
the sets of diet values so that many (9999 in this case) additional data sets are con-
structed under the null hypothesis that there is no morphology–diet correlation.
The result is the null permutation distribution in Exhibit 15.6. If there were no
(linear) relationship between morphology and diet, we would expect a propor-

Permutation test
of morphology–diet
relationship

Exhibit 15.6:
Permutation distribution of
the proportion of variance
explained in the
morphological variables by
the diet variables, under the
null hypothesis of no
relationship between these
two sets of variables. The
p-value associated with the
observed proportion of
0.145 is 0.0007

CASE STUDY 3: THE RELATIONSHIP BETWEEN ARCTIC CHARR FISH MORPHOLOGY AND DIET

161

Fr
eq

ue
nc

y

0.06 0.08 0.10 0.12 0.14 0.16

0
5

0
0

1
0

0
0

0.145



tion of explained variance of 0.093 (9.3%), with the estimated distribution shown.
Our observed value of 0.145 (14.5%) is in the far right tail of the distribution, and
only 6 of the permuted data sets gives a proportion higher than this value—hence
the p-value is 7/10,000 = 0.0007 (the observed value is included with the 26 high-
er ones to make this calculation).

Up to now we included all of the diet variables, but it may be that only a subset of
them explain a significant part of the variance. The individual contributions of
the variables to this explained variance can not be calculated, but a stepwise
search can be conducted similar to that of stepwise regression. First, the single
variable that explains the most variance is computed, by trying each one at a time.
The amounts of explained variance for each variable are:

PlankCop: 0.0412
PlankClad: 0.0201
InsectAir: 0.0294
InsectLarv: 0.0163
BenthCrust: 0.0241
BenthMussl 0.0285
Others: 0.0139

so that PlankCop explains the most. We now perform a permutation test on this
explained variance, by permuting the values of PlankCop and recomputing the ex-
plained variance each time. The p-value is estimated at 0.0008, so this is highly sig-
nificant (see Exhibit 15.7).

The next step is to determine which second variable, when added to PlankCop, ex-
plains the most variance. The results are:

PlankCop + PlankClad: 0.0637
PlankCop + InsectAir: 0.0707
PlankCop + InsectLarv: 0.0557
PlankCop + BenthCrust: 0.0631
PlankCop + BenthMussl: 0.0638
PlankCop + Others: 0.0535

so that InsectAir explains the most additional variance. The permutation test now
involves fixing the PlankCop variable and permuting the values of InsectAir, lead-
ing to an estimated p-value of 0.0097 (see Exhibit 15.7).

We now continue the stepwise process by looking for a third dietary variable
which adds the most explained variance to PlankCop and InsectAir.
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Exhibit 15.7:
Permutation distributions
and observed values
(explained variances) for the
three stages of the stepwise
process, introducing
successively, from left to
right, PlankCop,
InsectAir and
BenthMussl. 
The p-values given by the
three tests are 0.0008,
0.0097 and 0.0496
respectively
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PlankCop + InsectAir + PlankClad: 0.0890
PlankCop + InsectAir + InsectLarv: 0.0826
PlankCop + InsectAir + BenthCrust: 0.0862
PlankCop + InsectAir + BenthMussl: 0.0934
PlankCop + InsectAir + Others: 0.0827

So the winner is BenthMussl. The permutations test fixes PlankCop and InsectAir
and permutes BenthMussl, leading to an estimated p-value of 0.0496 (see Exhibit
15.7). No other variables enter below the “classical” level of 0.05 and the final
canonical LRA, using the three variables PlankCop, InsectAir and BenthMussl, ex-
plains a total of 9.15% of the variance of the morphological data. The canonical
LRA of the morphological data with just these three significant diet variables is
shown in Exhibit 15.8.

Finally, the most highly contributing morphometric variables were identified—
there are eight of them, out of the 26—contributing a total of 66% of the iner-

Exhibit 15.8:
Weighted LRA biplot

constrained by the three
significant fish diet

variables, using the same
scalings as Exhibit 15.5.

85.8% of the constrained
variance is accounted for
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tia in the constrained biplot. The analysis was repeated from the start, using just
these eight variables, and the constrained biplot is shown in Exhibit 15.9. This
biplot shows the essential structure in the morphological–diet relationship. The
first dimension opposes PlankCop against BenthMussl, which we already saw in
the CA-DA of Exhibit 15.4 was important in the separation of pelagic from lit-
toral groups. The band of fish seen from left to right have zero InsectAir, with
mostly littoral fish on the right with higher than average benthic mussels in the
stomach, also with larger jaw widths and head heights, and mostly pelagic fish
on the left feeding on more planktonic cladocerans, and with relatively larger
tails (one female littoral fish is also on the left, as in previous biplots, and seems
to be an exception in this otherwise pelagic group). InsectAir (flying insects) de-
fines a separate perpendicular direction of spread, pulling out a few fish, espe-
cially one female pelagic (fP) which was seen to be isolated in previous biplots—
this fish has 15% InsectAir in its stomach, much higher than any other fish in this
data set, and also happens to have one of the highest values of posterior head
length (Hpl).

Exhibit 15.9:
Weighted LRA biplot
constrained by the three
significant fish diet
variables, and using only
the most highly contributing
morphometric variables. The
same scalings as Exhibits
15.5 and 15.8 are used for
all three sets of points.
94.6% of the constrained
variance is accounted for
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This case study shows how a biplot, specifically the log-ratio biplot in this case, can
allow investigation of the patterns in a multivariate data set that are directly re-
lated to a set of external variables. The use of permutation tests permits distin-
guishing the external variables that explain significant variation from the others.
Some biological conclusions about the relationship between fish morphology and
fish diet are as follows:

1. The fish included in this study are characterized by two distinct forms feeding
in different habitats (pelagic vs littoral) and on different prey (benthos vs
plankton).

2. The feeding habits are associated with distinctive morphologies, with fish feed-
ing on benthic crustaceans being more bulky and with greater jaws relative to
the more slender plankton eating fish.

3. In the littoral zone males and females display similar diets, whereas in the
pelagic males are more oriented towards planktonic cladocerans (waterfleas)
and surface insects but females prefer deep dwelling copepods.

SUMMARY
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APPENDIX

Computation of Biplots

In this appendix the computation of biplots is illustrated using the object-orien-
tated programming language R, which can be freely downloaded from the R-pro-
ject website:

http://www.r-project.org

It is assumed that the reader has some basic knowledge of R—if not, consult some
of the web resources and tutorials given on this website and in the bibliography.
An R script file is given on the website:

http://www.multivariatestatistics.org

as well as the data sets, so that readers can reproduce the biplots described in this
book. The idea in this Appendix is to explain some of these commands, and so
serves as an R tutorial in the context of the material presented in this book.

R commands will be indicated in slanted typewriter script in brown, while the re-
sults are given in non-slanted green. A + at the start of a line indicates the con-
tinuation of the command (in the script file the command is given as a single
line). Notice that the idea in this appendix is to educate the user in the use of R
by showing alternative ways of arriving at biplot solutions, including different ways
of plotting the final results. In some cases the R code might not be the most effi-
cient way of arriving at the final goal, but will illustrate different functions in the
R toolbox that can be learnt by example.

There are two recommended ways of reading data into R. Suppose that you want
to read in the data in Exhibit 1.1. These data are either in a text file or an Excel
file, for example. Suppose that the file EU2008.txt is in your R working direc-
tory and contains the following:

X1 X2   X3
Be 19200  115.2  4.5
De 20400  120.1  3.6
Ge 19500  115.6  2.8
Gr 18800   94.3  4.2
Sp 17600  102.6  4.1

Reading data into R
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Fr 19600  108.0  3.2
Ir 20800  135.4  3.1
It 18200  101.8  3.5
Lu 28800  276.4  4.1
Ne 20400  134.0  2.2
Po 15000   76.0  2.7
UK 22600  116.2  3.6

Then the following command will read the data file into the data frame EU2008:

EU2008 <- read.table(“EU2008.txt”)

The alternative way (for Windows users) is to simply copy the file and then read
it from the file called “clipboard”. The copying can be done in the text file or in
an Excel file (by painting out the data file and then using either the pull-down
Edit menu, or Ctrl-C, or right-clicking on the mouse and selecting Copy), for ex-
ample:

and then read the file from the clipboard using

EU2008 <- read.table(“clipboard”)

Notice that the function read.table successfully reads the table because of the
blank cell in the upper left corner of the spreadsheet, which effectively signals to
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the function that the first row contains the columns labels and the first column
the row labels. Once the data file has been read, computations and graphical dis-
plays can commence. 

The following commands reproduce Exhibit 1.2:

windows(width=11, height=6)
par(mfrow=c(1,2), cex.axis=0.7)
plot(EU2008[,2:1], type=”n”, xlab=”GDP/capita”,
+                         ylab=”Purchasing power/capita”)
text(EU2008[,2:1], labels=rownames(EU2008), col=”green”, font=2)
plot(EU2008[,2:3], type=”n”, xlab=”GDP/capita”,
+                         ylab=”Inflation rate”)
text(EU2008[,2:3], labels=rownames(EU2008), col=”green”, font=2)

The first command above sets the window size in inches—by default it would be
7 inches square—and the second command sets the plot layout with two plots side
by side, and axis scale labelling in a font size 0.7 times the default. These settings
remain in this window until it is closed.

Three-dimensional plotting is possible using the R package rgl, which should be
downloaded separately—for example, using the pull-down menu in R, select Pack-
ages and Install packages, then choose a mirror site and finally choose “rgl” from
the long alphabetical list of available packages. The three-dimensional display on
which Exhibit 1.3 is based can then be obtained as follows:

library(rgl)
plot3d(EU2008[,c(2,1,3)], xlab=”GDP”, ylab=”Purchasing power”,
+                    zlab=”Inflation”, font=2, col=”brown”, 
+                                       type=”n”)
text3d(EU2008[,c(2,1,3)], text=rownames(EU2008), font=2, 
+                                   col=”green”) 

The data set “bioenv” is assumed to have been read into the data frame bioenv,
with 8 columns: the species a to e, and the three continuous variables pollution,
depth and temperature. To calculate the linear regression of species d on pollution
and depth:

d <- bioenv[,4]
y <- bioenv[,6]
x <- bioenv[,7]
summary(lm(d~y+x))
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(...)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.13518 6.25721 0.980 0.33554
y -1.38766 0.48745 -2.847 0.00834 **
x 0.14822 0.06684 2.217 0.03520 * 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 5.162 on 27 degrees of freedom
Multiple R-squared: 0.4416,     Adjusted R-squared: 0.4003 
F-statistic: 10.68 on 2 and 27 DF, p-value: 0.0003831

There are two ways to calculate the standardized regression coefficients: first by
standardizing all the variables and repeating the regression: 

ds <- (d-mean(d))/sd(d)
ys <- (y-mean(y))/sd(y)
xs <- (x-mean(x))/sd(x)
summary(lm(ds~ys+xs))

(...)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.487e-17  1.414e-01 1.76e-16  1.00000   
ys          -4.457e-01  1.566e-01   -2.847 0.00834 **
xs         3.472e-01  1.566e-01  2.217 0.03520 * 
---
Residual standard error: 0.7744 on 27 degrees of freedom
Multiple R-squared: 0.4416,     Adjusted R-squared: 0.4003 
F-statistic: 10.68 on 2 and 27 DF, p-value: 0.0003831

or by direct calculation using the unstandardized coefficients and the standard
deviations of the variables:

lm(d~y+x)$coefficients[2]*sd(y)/sd(d)
y 

-0.4457286

lm(d~y+x)$coefficients[3]*sd(x)/sd(d)
x

0.3471993

The standardized regression coefficients for all five variables can be calculated in
a loop and stored in a matrix B, as in (2.2):
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B <- lm(bioenv[,1]~y+x)$coefficients[2:3]*c(sd(y),
+                              sd(x))/sd(bioenv[,1])
for(j in 2:5) B <- cbind(B,lm(bioenv[,j]~ y+x)$coefficients[2:3]
+              *c(sd(y),sd(x))/sd(bioenv[j]))

B

y    x
B -0.7171713  0.02465266

-0.4986038  0.22885450
0.4910580  0.07424574

-0.4457286  0.34719935
-0.4750841 -0.39952072

A regression biplot similar to the one in Exhibit 2.5 can be drawn as follows:8

plot(xs, ys, xlab=”x*(depth)”, ylab=”y*(pollution)”, type=”n”,
+  asp=1, cex.axis=0.7)
text(xs, ys, labels=rownames(bioenv))
text(B[,2:1], labels=colnames(bioenv[,1:5]), col=”red”, font=4)
arrows(0,0,0.95*B[,2],0.95*B[,1], col=”red”, angle=15, 
+  length=0.1)

So far, in the plotting instructions, several graphical parameters have appeared to
enhance the final figure, for example:

• col: sets the colour of a label or a line different from the default black, e.g.
col="red".

• cex: changes the font size of the label, e.g. cex=0.8 scales the label to 80%
of its default size.

• cex.axis: changes the font size of the scale on the axes.
• font: changes the font style, e.g. font=4 is bold italic.

These options, and many more, are listed and explained as part of the par func-
tion in R—for help on this function, enter the command:

?par

To avoid repetition and commands that are full of these aesthetic enhancements
of the plots, they will generally be omitted in this computational appendix from
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now on; but they nevertheless appear in the online script file. In addition, axis la-
belling will be generally omitted as well—this can be suppressed by including in
the plot function the options xlab="", ylab="", otherwise the default is to la-
bel the axes with the names of the variables being plotted.

The species d is nonlinearly transformed by the fourth-root, and then regressed
on standardized pollution and depth:

d0 <- d^0.25
summary(lm(d0~ys+xs))

(...)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.63908 0.09686 16.923 6.71e-16 ***
ys -0.28810 0.10726 -2.686 0.0122 *  
xs 0.05959 0.10726 0.556 0.5831
---
Residual standard error: 0.5305 on 27 degrees of freedom
Multiple R-squared: 0.2765,     Adjusted R-squared: 0.2229 
F-statistic: 5.159 on 2 and 27 DF, p-value: 0.01266

Additional scripts are given in the online R script file for saving the coefficients
for all the regressions (Exhibits 3.1, 3.4, 3.5). We give further examples just for
species d:

Fitting a Poisson regression model for species d:

summary(glm(d~ys+xs, family=poisson))

(...)
Coefficients:

Estimate Std. Error z value Pr(>|z|)    
(Intercept) 2.29617 0.06068 37.838 < 2e-16 ***
ys -0.33682 0.07357 -4.578 4.69e-06 ***
xs 0.19963 0.06278 3.180 0.00147 ** 
---
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 144.450 on 29 degrees of freedom
Residual deviance:  88.671 on 27 degrees of freedom
AIC: 208.55

To get the “error” deviance for this Poisson regression:

Chapter 3:
Generalized Linear Model
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poisson.glm <- glm(d~ys+xs, family=poisson)
poisson.glm$deviance/poisson.glm$null.deviance
[1] 0.6138564

Fitting a logistic regression model, for example for species d, after converting its
values to presence/absence (1/0):

d01 <- d>0
summary(glm(d01~ys+xs, family=binomial))

(...)
Coefficients:

Estimate Std. Error z value Pr(>|z|)   
(Intercept) 2.7124 0.8533 3.179 0.00148 **
ys -1.1773 0.6522 -1.805 0.07105 * 
xs -0.1369 0.7097 -0.193 0.84708   
---
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 19.505 on 29 degrees of freedom
Residual deviance: 15.563 on 27 degrees of freedom
AIC: 21.563

To get the “error” deviance for this logistic regression:

logistic.glm <- glm(d01~ys+xs, family=binomial)
logistic.glm$deviance/logistic.glm$null.deviance
[1] 0.7979165 

The data set “countries” (Exhibit 4.1) is assumed to have been read into the data
frame MT_matrix—this is the 13 × 13 dissimilarity matrix between 13 countries
given by student “MT”. The R function cmdscale performs classical multidi-
mensional scaling. Exhibit 4.2 is obtained as follows (notice the option asp=1
which sets the aspect ratio equal to 1 so that the scales have identical unit inter-
vals horizontally and vertically):

plot(cmdscale(MT_matrix), type=”n”, asp=1)
text(cmdscale(MT_matrix), labels=colnames(MT_matrix))

The data set “attributes” (first six columns of Exhibit 4.3) is assumed to have been
read into the data frame MT_ratings, with 13 rows and 6 columns. To add the
regression coefficients of each attribute to Exhibit 4.2 to eventually obtain Exhibit
4.5, first store the coordinates of the countries (rightmost pair of columns in Ex-
hibit 4.3) in MT_dims:

Chapter 4:
Multidimensional Scaling
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COMPUTATION OF BIPLOTS

173



MT_dims <- cmdscale(MT_matrix, eig=T, k=2)$points
colnames(MT_dims) <- c(“dim1”,”dim2”)

then calculate the regression coefficients and strore them in MT_coefs (Exhibit 4.4)

MT_coefs <- lm(MT_ratings[,1]~MT_dims[,1]+MT_dims[,2])
+  $coefficients
for(j in 2:ncol(MT_ratings)) MT_coefs<-rbind(MT_coefs,
+ lm(MT_ratings[,j]~MT_dims[,1]+MT_dims[,2])$coefficients)

Finally, plot the regression coefficients on the MDS plot (Exhibit 4.5)

plot(cmdscale(MT_matrix), type=”n”, asp=1)
text(cmdscale(MT_matrix), labels=colnames(MT_matrix))
arrows(0,0,MT_coefs[,2], MT_coefs[,3], length=0.1, angle=10)
text(1.2*MT_coefs[,2:3], labels=colnames(MT_ratings))

As an example of the definition of a function, the following is a function called
chidist to compute the chi-square distances between the rows or columns of a
supplied rectangular matrix. 

chidist <- function(mat,rowcol=1) {
if(rowcol= =1) {

prof <- mat/apply(mat,1,sum)
rootaveprof <- sqrt(apply(mat,2,sum)/sum(mat))
}

if(rowcol= =2) {
prof <- t(mat)/apply(mat,2,sum)
rootaveprof <- sqrt(apply(mat,1,sum)/sum(mat))
}
dist(scale(prof,FALSE,rootaveprof))  

}

So chidist(N,1) calculates chi-square distances between row profiles (this is
the default, so for row profiles, chidist(N) is sufficient), chidist(N,2) calcu-
lates chi-square distances between column profiles. The following code performs
and saves the MDS (there are four dimensions in this problem—this is explained
in Chapter 8 on correspondence analysis), and prints the percentages of variance
explained on each dimension:

abcde <- bioenv[,1:5]
abcde_mds <- cmdscale(chidist(abcde), eig=T, k=4)
100*abcde_mds$eig/sum(abcde_mds$eig)
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Then the site points are plotted, as in Exhibit 4.6—notice the extra parameters in
the plot function for setting limits on the plot, anticipating additional points to
be added to the plot, and also notice that if a matrix argument is given to the
functions plot and text, then by default the first two columns are used:

plot(abcde.mds$points, type=”n”, asp=1, xlim=c(-1.2,1.6), 
+  ylim=c(-1.1,1.8))  
text(abcde.mds$points) 

In this case, to add the species points, the species data are first converted to pro-
files, standardized by dividing them by the square roots of their marginal (“ex-
pected”) values, as is the case when calculating chi-square distances:

abcde_prof <- abcde/apply(abcde,1,sum)
abcde_prof_stand <- t(t(abcde_prof)/sqrt(apply(abcde,2,sum)/
+  sum(abcde)))

The regressions are then performed on the dimensions, the coefficients saved
and then added as arrows to the map plotted above:

mds_coefs <- lm(abcde_prof_stand[,1]~ 
+  abcde.mds$points[,1]+abcde.mds$points[,2])$coefficients
for(j in 2:5) mds_coefs<-rbind(mds_coefs, 
+  lm(abcde_prof_stand[,j]~
+  abcde.mds$points[,1]+abcde.mds$points[,2])$coefficients)
arrows(0,0,mds_coefs[,2],mds_coefs[,3], length=0.1, angle=10)
text(1.1*mds_coefs[,2:3], labels=colnames(abcde))

Assuming the sediment variable has been read (in character form) into the vec-
tor sediment, convert it to a factor.

sediment <- as.factor(sediment)

Plot positions of sediment categories in two different ways. The first way is to av-
erage the positions of the site points for each category, to show average clay, grav-
el and sand site:

sediment.means <- cbind(tapply(abcde.mds$points[,1], 
+  sediment, mean),tapply(abcde.mds$points[,2], sediment, mean))
text(sediment.means, labels=c(“C”,”G”,”S”))

The second way is to think of them as dummy variables to be predicted by the bi-
plot dimensions, for example by logistic regression as in Chapter 3. They are first
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converted to zero/one dummies and then their logistic coefficients are used to
plot them as biplot axes:

clay01   <- sediment==”C”
gravel01 <- sediment==”G”
sand01   <- sediment==”S”

sediment_coefs <-

+  glm(as.numeric(clay01)~abcde.mds$points[,1]+ 
+  abcde.mds$points[,2],family=”binomial”)$coefficients
sediment_coefs <- rbind(sediment_coefs, 
+  glm(as.numeric(gravel01)~abcde.mds$points[,1]+
+  abcde.mds$points[,2], family=”binomial”)$coefficients)
sediment_coefs <- rbind(sediment_coefs, 
+  glm(as.numeric(sand01)~abcde.mds$points[,1]+
+  abcde.mds$points[,2], family=”binomial”)$coefficients)
segments(0, 0, sediment_coefs[,2], sediment_coefs[,3])
text(sediment_coefs[,2:3], labels=c(“C”,”G”,”S”)) 

This is the code to produce the biplot of the 5 × 4 matrix of rank 2 which was
used as an introductory example in Chapter 1 and which is plotted here using
the SVD:

Y <- matrix(c(8,5,-2,2,4,2,0,-3,3,6,2,3,3,-3,-6,-6,-4,1,-1,-2), 
+   nrow=5)
colnames(Y) <- c(“A”,”B”,”C”,”D”)
rowcoord <- svd(Y)$u %*% diag(sqrt(svd(Y)$d))
colcoord <- svd(Y)$v %*% diag(sqrt(svd(Y)$d))
plot(rbind(rowcoord,colcoord), type=”n”, asp=1)
abline(h=0, v=0, lty=”dotted”)
text(rowcoord, labels=1:5)
text(colcoord, labels=colnames(Y))

The “attributes” data set in the data frame MT_ratings is centred—notice the
sweep function to subtract the column means from each column:

MT_means <- apply(MT_ratings,2,mean)
MT_Y <- sweep(MT_ratings, 2, MT_means)

The equal row and column weights are applied and the singular value decompo-
sition (SVD) calculated:

MT_Y <- MT_Y/sqrt(nrow(MT_Y)*ncol(MT_Y))
MT_SVD <- svd(MT_Y)

Chapter 5:
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The form biplot (Exhibit 6.1), showing the rows in principal coordinates and the
columns in standard coordinates, is computed and plotted as follows:

MT_F <- sqrt(nrow(MT_Y))*MT_SVD$u%*%diag(MT_SVD$d)
MT_G <- sqrt(ncol(MT_Y))*MT_SVD$v
plot(rbind(MT_F,MT_G), type=”n”, asp=1, xlim=c(-3.6,2.3)) 
text(MT_F, labels=rownames(MT_ratings)) 
arrows(0, 0, MT_G[,1], MT_G[,2], length=0.1, angle=10)
text(c(1.07,1.3,1.07,1.35,1.2,1.4)*MT_G[,1],
+  c(1.07,1.07,1.05,1,1.16,1.1)*MT_G[,2], 
+  labels=colnames(MT_ratings))

Notice two aspects of the above code: first, the plot command again contains
an explicit xlim option to extend the horizontal axis limits slightly, to accom-
modate the labels of the extreme points Germany and Morocco; and second, in
the text command there are explicit scaling factors—obtained by trial and er-
ror—to position the attribute labels in the plot so that they do not overlap (this
is generally done externally to R, by hand, to clean up the final version of the
figure).

The covariance biplot (Exhibit 6.2), showing the rows in standard coordinates
and the columns in principal coordinates, is similarly computed and plotted as
follows:

MT_F <- sqrt(nrow(MT_Y))*MT_SVD$u
MT_G <- sqrt(ncol(MT_Y))*MT_SVD$v%*%diag(MT_SVD$d)
plot(rbind(MT_F,MT_G), type=”n”, asp=1, xlim=c(-3.6, 2.3)) 
text(MT_F, labels=rownames(MT_ratings)) 
arrows(0, 0, MT_G[,1], MT_G[,2], length=0.1, angle=10)
text(c(1.07,1.20,1.07,1.25,1.07,1.3)*MT_G[,1],
+   c(1.07,1.07,1.04,1.02,1.16,1.07)*MT_G[,2],
+   labels=colnames(MT_ratings))

The basic graphical part of the scree plot of Exhibit 6.3 is drawn as follows:

MT_percents<-100*MT_SVD$d^2/sum(MT_SVD$d^2)
MT_percents<-MT_percents[seq(6,1)]
barplot(MT_percents, horiz=T, cex.axis=0.7)

The data set “USArrests” is in the R base package so is obtained simply with the
data command:

data(USArrests)

Chapter 7:
Log-ratio Biplots
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Columns 1, 2 and 4 of the data frame will be used. The weighted log-ratio biplot,
(7.1) to (7.4) is performed as follows, where rm and cm are the row and column
margins r and c, and mr and mc are weighted means used in the double-centring: 

N  <- USArrests[,c(1,2,4)]
P  <- N/sum(N)
rm   <- apply(P, 1, sum)
cm   <- apply(P, 2, sum)
Y  <- as.matrix(log(P))
mc   <- t(Y) %*% as.vector(rm)
Y  <- Y - rep(1,nrow(P)) %*% t(mc)
mr   <- Y %*% as.vector(cm)
Y  <- Y - mr %*% t(rep(1,ncol(P)))
Z  <- diag(sqrt(rm)) %*% Y %*% diag(sqrt(cm))
svdZ <- svd(Z)

The biplot of the row principal and column standard coordinates (Exhibit 7.1) is
obtained as follows, where the column coordinates are scaled down by 20 to make
the plot more legible. As a consequence there are two scales on the plot, indicat-
ed on the left and at the bottom for the row points, and at the top and on the
right for the column points—in this case we show how the two sets of scales can
be colour coded to agree with their respective points:

# compute form biplot coordinates from results of SVD
USA_F <- diag(1/sqrt(rm)) %*% svdZ$u[,1:2] %*% diag(svdZ$d[1:2])
USA_G <- diag(1/sqrt(cm)) %*% svdZ$v[,1:2]
# biplot – axes with different scales plotted individually
plot(rbind(USA_F, USA_G/20), xlim=c(-0.35,0.45), 
+  ylim=c(-0.18,0.23), asp=1, type = “n“, xaxt=”n”, yaxt=”n”)
axis(1, col.axis=”green”, col.ticks=”green”)
axis(2, col.axis=”green”, col.ticks=”green”, at=seq(-0.2,0.2,0.2))
axis(3, col.axis=”brown”, col.ticks=”brown”, at=seq(-0.4,0.4,0.2),
+  labels=seq(-8,8,4))
axis(4, col.axis=”brown”, col.ticks=”brown”, at=seq(-0.2,0.2,0.2),
+  labels=seq(-4,4,4))
text(USA_F, labels = rownames(N), col = “green”)
text(USA_G/20, labels = colnames(N), col = “brown”)

The total variance of the data can be calculated either as the sum of squares of
the elements of the decomposed matrix (Z in the above code) or as the sum of its
squared singular values:

sum(Z*Z)
[1] 0.01790182
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sum(svdZ$d^2)
[1] 0.01790182

The fish morphology example goes through in a similar way, assuming that the
data frame fish contains the data, with the first two columns being the sex and
habitat (see the description later of this analysis in the computations for Chapter
11). The remaining columns are the morphometric data, stored in fish.morph.

fish.morph <- fish[,3:ncol(fish)] 

The only difference in the plotting in Exhibit 7.3 compared to the previous exam-
ple is that the column standard coordinates are divided by 50, not 20, since these
data have even less variance—the sum of squares of the corresponding Z matrix is:

sum(Z*Z)
[1] 0.001960883

Then, instead of fish identity codes, their sex × habitat are used as labels, stored
in fish.labels—the first statement below computes numerical codes for the
four sex × habitat groups:

fish.sexhab <- 2*(fish[,2]-1)+fish[,1]
fish.labels <- rep(“fL”, nrow(fish))
fish.labels[fish.sexhab==”2”] <- ”mL”
fish.labels[fish.sexhab==”3”] <- ”fP”
fish.labels[fish.sexhab==”4”] <- ”mP”

The plot of the two log-ratios in Exhibit 7.4 is obtained as follows (notice how vari-
ables can be picked out of the data.frame fish.morph by name):

logFdlFal <- log(fish.morph[,”Fdl”] / fish.morph[,”Fal”])
logFdwFal <- log(fish.morph[,”Fdw”] / fish.morph[,”Fal”])
plot(logFdlFal,logFdwFal, asp=1, pch=24, xlab=”log(Fdl/Fal)”,
+   ylab=”log(Fdw/Fal)”)
abline(a=0.0107, b=0.707, lty=2)

The predicted values of variable Fdw (dorsal fin width) are computed and then
compared graphically to their actual values as follows:

Fdw_pred <-
+  1.0108 * fish.morph[,”Fdl”]^0.707 * fish.morph[,”Fal”]^0.293
plot(Fdw_pred, fish.morph[,”Fdw”], xlim=c(18,30), ylim=c(18,30),
+  pch=24, xlab=”predicted Fdw”, ylab=”actual Fdw”)
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abline(a=0, b=1, lty=2, col=”brown”)
# correlation between predicted and observed
cor(Fdw_pred, fish.morph[,”Fdw”])
[1] 0.7496034

For the calculations of CA, and later MCA, we shall tend to use the package ca in
R. This has to be installed from the CRAN package library first, and then loaded
into an R session:

library(ca)

The “smoking” data set is included in the ca package:

data(smoke) 

The commands for performing CA from first principles, as described in (8.1) and
(8.2), are:

N    <- smoke
P    <- N/sum(N)
rm   <- apply(P, 1, sum)
cm   <- apply(P, 2, sum)
Dr   <- diag(rm)
Dc   <- diag(cm)
Z    <- diag(sqrt(1/rm))%*%(as.matrix(P)-rm%*%t(cm))
+ %*%diag(sqrt(1/cm))
svdZ <- svd(Z)

For the asymmetric map of Exhibit 8.1 the row principal and column standard co-
ordinates are:

smoke_F <- diag(1/sqrt(rm))%*%svdZ$u %*%diag(svdZ$d)
smoke_G <- diag(1/sqrt(cm))%*%svdZ$v

and can be plotted in the usual way.

However, using the ca package Exhibit 8.2 can be obtained in just one instruction: 

plot(ca(smoke),map=”rowprincipal”, col=c(“green”,”brown”))

The plot function here is actually the plot.ca function, automatically recog-
nizing the ca object, and the col option now defines the colours of the row and
column symbols.

Chapter 8:
Correspondence Analysis

Biplots

BIPLOTS IN PRACTICE

180



The numerical results, including the contributions to inertia, are listed using the
summary function:9

summary(ca(smoke))

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.074759 87.8 87.8 *************************
2 0.010017 11.8 99.5 ***                      
3 0.000414 0.5 100.0                           

-------- -----                           
Total: 0.085190 100.0                                 

Rows:
name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  

1 |   SM | 57  893   31 |  -66  92  3 | -194 800 214 |
2 |   JM |   93  991  139 |  259 526  84 | -243 465 551 |
3 |   SE | 264 1000  450 | -381 999 512 | -11   1 3 |
4 |   JE | 456 1000  308 |  233 942 331 |  58  58 152 |
5 |   SC | 130 999 71 | -201 865  70 |  79 133  81 |

Columns:
name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  

1 |  non |  316 1000 577 | -393 994 654 |  -30   6  29 |
2 |  lgh |  233  984 83 | 99 327 31 |  141 657 463 |
3 |  mdm |  321  983  148 |  196 982 166 |  7 1 2 |
4 |  hvy |  130  995  192 |  294 684 150 | -198 310 506 |

Suppose that the “benthos” data set has been read into the data frame benthos.
First perform the CA and calculate the row contributions to the two-dimensional
biplot (note that the standard coordinates are stored in the ca object).

benthos.ca <- ca(benthos)
benthos.F <- benthos.ca$rowcoord %*% diag(benthos.ca$sv)
benthos.rowcon <- benthos.ca$rowmass * (benthos.F[,1]^2 + 
+         benthos.F[,2]^2) / sum(benthos.ca$sv[1:2]^2)

Then set up a vector of species labels where those with contributions less than 1%
are labelled “·”. 
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benthos.names <- rownames(benthos)
benthos.names[benthos.rowcon<0.01] <- “·”

A nonlinear transformation is performed on the contributions above 1%, to be
used for the character size of the labels. 

benthos.rowsize <- log(1+exp(1)*benthos.rowcon^0.3)
benthos.rowsize[benthos.rowcon<0.01] <- 1

Exhibit 8.3 is plotted, with rows (species) in standard coordinates and columns
(sites) in principal coordinates, with varying label sizes for the species.

FF <- benthos.ca$rowcoord
GG <- benthos.ca$colcoord %*% diag(benthos.ca$sv)
plot(rbind(FF,GG), type = “n”, xlab “”, ylab = ““, asp=1)
text(FF[,1:2], labels = benthos.names, cex=benthos.rowsize) 
text(GG[,1:2], labels = colnames(benthos)) 

The biplot showing point contributions is available in the ca package, using map
option “rowgreen“ or “colgreen“ depending on which set is required in prin-
cipal coordinates (in our case it would be the sites, or columns). The species labels
are first substituted with those where the low contributing ones are replaced by “·”. 

benthos.ca$rownames <- benthos.names

Because rows are species (variables) and columns are sites (samples) the symbols
need to be reversed—see help(plot.ca) in R for information about the plot
option pch and execute the command pchlist() to get a list of plotting sym-
bols (an alternative would be to transpose the data matrix from the start). For this
biplot we also use the plot option mass to get symbols with sizes related to the
species masses. The contribution biplot of Exhibit 8.4 is obtained using plot op-
tion map=”colgreen”, which plots the columns in principal coordinates, as be-
fore, but the species (rows) in their contribution positions:

plot(benthos.ca, map=”colgreen”, mass=c(1,0), pch=c(17,24,16,1))  

Lines are added connecting the origin with the species points, showing how their
positions are computed as standard coordinates multiplied by the square roots of
the species masses:

for(j in 1:nrow(benthos)) lines( 
+ c(0,benthos.ca$rowcoord[j,1]*sqrt(benthos.ca$rowmass[j])),
+ c(0,benthos.ca$rowcoord[j,2]*sqrt(benthos.ca$rowmass[j]))) 
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Alternatively, the segments function can be used, which automatically recycles
the coordinates 0 and 0 in the following command:

segments(0, 0, benthos.ca$rowcoord[,1]*sqrt(benthos.ca$rowmass), 
+         benthos.ca$rowcoord[,2]*sqrt(benthos.ca$rowmass))

The original data set “women” consists of the 2471 Spanish respondents in the
2002 ISSP survey on Family and Changing Gender Roles III, including their re-
sponses to the 8 substantive and 4 demographic variables listed in Chapter 9. In
the supporting website it is shown how the concatenated matrix can be extracted
from the original data. The simplest way is using a concept from Chapter 10
called the Burt matrix, and the most complicated is by converting all question re-
sponses first into zero—one dummy variables—both of these are explained in the
next section on Chapter 10 . For the moment we assume that this matrix (part of
which is shown in Exhibit 9.1), called women.concat, has already been comput-
ed, or input directly from an external source (the concatenated matrix itself is
also provided on the website). The two categories H4 and H5 have also been com-
bined into a category, labelled H4,5, so the matrix has 23 rows and 39 columns.

The symmetric CA of the concatenated matrix can be obtained using the default
plot option in the ca package:

plot(ca(women.concat)) 

Depending on the version of the ca package (or any other software for corre-
spondence analysis), an inversion of the axes might be obtained. The following
code shows how the sign of the second axis is reversed, once the correspondence
analysis object is saved:

women.ca <- ca(women.concat)
women.ca$rowcoord[,2] <- -women.ca$rowcoord[,2]
women.ca$colcoord[,2] <- -women.ca$colcoord[,2]
plot(women.ca)

Exhibit 9.2 was obtained by plotting the symbols first, and then adding the two
sets of labels in different styles, also adding the inertias and their percentages on
the axes:

plot(women.ca, labels=0)
women.F <- women.ca$rowcoord %*% diag(women.ca$sv)
women.G <- women.ca$colcoord %*% diag(women.ca$sv)
text(women.F, labels=women.ca$rownames, pos=4, offset=0.3)
text(women.G, labels=women.ca$colnames, pos=4, offset=0.3)

Chapter 9:
Multiple Correspondence
Analysis Biplots I
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text(max(women.G[,1]), 0, “0.0571 (82.1%)”, adj=c(0.6,-0.6)) 
text(0, max(women.G[,2]), “0.0030 (4.4%)”, adj=c(-0.1,-3))

The map is plotted in a square window, which should then be pulled into the flat-
ter shape of Exhibit 9.2 (the aspect ratio is not affected by this action). Having
pulled the window into the desired shape, repeat the plotting so that the labels
are properly positioned. Then the only difference between this result and Ex-
hibit 9.2 is an adjustment of some of the overlapping labels, performed exter-
nally to R.

Exhibit 9.3 is plotted in a similar way, but using the plot option map="rowprin-
cipal"

plot(women.ca, map=”rowprincipal”, labels=c(0,2))

Similarly, the contribution biplot in Exhibit 9.6, where the the standard coordi-
nates are shrunk by the square roots of the category masses, is obtained with the
plot option map="rowgreen" (here the mass option is also illustrated, to make
the size of the column category symbols be related to their masses:

plot(women.ca, map=”rowgreen”, mass=c(F,T))

To add the supplementary points for sex (m = male, f = female) and age (a1
to a6):

women.sex <- c(rep(“m”,6),rep(“f”,6)) 
women.age <- rep(c(“a1”,”a2”,”a3”,”a4”,”a5”,”a6”),2)
women.sex.F <- cbind(tapply(women.F[12:23,1],women.sex,mean), 
+            tapply(women.F[12:23,2],women.sex,mean))
women.age.F <- cbind(tapply(women.F[12:23,1],women.age,mean), 
+            tapply(women.F[12:23,2],women.age,mean))
points(rbind(women.sex.F, women.age.F), pch=21)
text(rbind(women.sex.F, women.age.F),
+  labels=c(“f”,”m”,”a1”,”a2”,”a3”,”a4”,”a5”,”a6”), 
+  pos=4, offset=0.3)

The Burt matrix is a by-product of the mjca function in the ca package. If women
contains the original response data, with the first 8 columns corresponding to
the eight substantive questions A to H, then the Burt matrix is obtained as fol-
lows:

women.Burt <- mjca(women[,1:8])$Burt

Chapter 10:
Multiple Correspondence

Analysis Biplots II
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If the categories H4 and H5 have not already been combined, then this can be
done by combining the corresponding rows and columns of the Burt matrix:

women.Burt[,39] <- women.Burt[,39]+women.Burt[,40]
women.Burt[39,] <- women.Burt[39,]+women.Burt[40,]
women.Burt <- women.Burt[-40,-40]
rownames(women.Burt)[39] <- colnames(women.Burt)[39] <- “H4,5”

An alternative way to compute the Burt matrix, assuming that the “women” data
set has been read as dummy variables into the data frame women.Z containing
the indicator matrix of dummy variables for the 8 questions A to H (40 dummies
if H5 included, otherwise 39 if H4 and H5 have been combined). Then, as given
in (10.2), the Burt matrix can be computed by premultiplying the indicator ma-
trix by its transpose (notice the as.matrix commands if women.Z is a data
frame, necessary for the multiplication):

women.Burt<- t(as.matrix(women.Z))%*%as.matrix(women.Z)

In the same way, the concatenated matrix women.concat can be obtained from
the Burt matrix of all the variables, including the demographics, or via the in-
dicator matrices. Suppose that womenS.Z contains the 2107 × 31 indicator matrix
of dummy variables for the demographic variables (2 for sex, 5 for marital sta-
tus, 6 for education, 6 for age, 12 sex-age combinations), then women.concat
can be computed by premultiplying women.Z by the indicator matrix of dummy
variables corresponding to sex, marital status, education and the sex-age combi-
nations:

women.concat<- t(as.matrix(womenS.Z[,c(3:13,20:31)])) %*% 
+          as.matrix(women.Z) 

Alternatively, select just that part of the Burt matrix of all the variables, including
the demographics, corresponding to the concatenated matrix:

women.concat <- mjca(women)$Burt[c(3:13,20:31),]

To obtain the total inertia of the Burt matrix, sum the squares of its singular val-
ues in the CA:

sum(ca(women.Burt)$sv^2) 
[1] 0.677625

Then use (10.1) to calculate the adjusted total inertia:
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(8/7)*(sum(ca(women.Burt)$sv^2)-(31/64)) 
[1] 0.2208571 

Total inertia of the indicator matrix, calculated from the CA (from theory we
know it will be equal to (39 – 8)/8 = 3.875:

sum(ca(women.Z)$sv^2) 
[1] 3.875 

Exhibit 10.3 can be obtained as follows (notice the change in the point symbols
using the pch option, to get a smaller dot symbol for the cases, and the mass op-
tion to get triangle symbols related to the relative frequency of the category): 

plot(ca(women.Z), map=”rowprincipal”, labels=c(0,2), 
+   pch=c(149,1,17,24), mass=c(FALSE,TRUE)) 

To see how many of the singular values (i.e., square roots of principal inertias) in
the analysis of the Burt matrix are larger than 1/8:

which(ca(women.Burt)$sv>(1/8)) 
[1] 1 2 3 4 5 6 7 8 9

So we apply the adjustment of (10.4) to the first 9 singular values:

(8/7)*(ca(women.Burt)$sv[1:9]-(1/8)) 
[1] 0.34219 0.23260 0.12415 0.11500 0.03451 0.02575 0.01489 
+ 0.00897 0.00681

To get parts of inertia explained on the axes, square these adjusted singular val-
ues and then express relative to the adjusted total inertia calculated previously:

(64/49)*(ca(women.Burt)$sv[1:9]-(1/8))^2/0.2208571
[1] 0.53017 0.24496 0.06979 0.05987 0.00539 0.00300 0.00100
+ 0.00036 0.00021

Notice that the above parts do not add up to 1, since these 9 MCA axes cannot
perfectly explain the total inertia in the off-diagonal tables: we would need to use
joint correspondence analysis (JCA) to achieve this. Exhibit 10.4 is obtained by
substituting the square roots of the adjusted inertias for the original ones in the
CA of the Burt matrix:

women.Burt.ca    <- ca(women.Burt)
women.Burt.ca$sv <- diag((8/7)*(ca(women.Burt)$sv[1:9]-(1/8)))
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The website http://www.multivariatestatistics.org gives the full sets of
instructions for plotting Exhibits 10.4 and 10.5. Exhibit 10.6 illustrates the compu-
tation of the contribution coordinates of the categories and including supple-
mentary points (again, notice that axes may be inverted compared to Exhibit 10.6):

women.BurtS.ca   <- ca(rbind(women.Burt, women.concat),
+           suprow=40:62)
women.BurtS.Gctr <- sqrt(women.BurtS.ca$colmass) *
+               women.BurtS.ca$colcoord
women.BurtS.ca$colcoord <- women.BurtS.Gctr
women.BurtS.ca$sv[1:9] <- (8/7)*(women.BurtS.ca$sv[1:9]-(1/8))
plot(women.BurtS.ca, map=”rowprincipal”, what=c(“none”,”all”),
+   labels=0, pch=c(20,1,24,24))
text(women.BurtS.Gctr, labels=women.Burt.ca$colnames, pos=2)
women.BurtS.Fsup <- women.BurtS.ca$rowcoord[40:62,] %*%
+   diag(women.BurtS.ca$sv)
points(women.BurtS.Fsup, pch=21)
text(women.BurtS.Fsup, labels=women.BurtS.ca$rownames[40:62],
+   pos=2)

From the log-ratio biplot of the morphometric data of the “morphology” data set
in chapter 7 we know that the total variance is equal to 0.001961. We now want to
aggregate the data into the four sex × habitat groups and measure how much vari-
ance is lost. The original data should not be aggregated since we are working on
a logarithmic scale. It is equivalent, however, to aggregate the log-transformed
data, or aggregate the rows of the double-centred matrix of log-transformed val-
ues. We choose the second way as an illustration, first repeating the initial steps
of the log-ratio analysis algorithm (see computations for Chapter 7) on the ma-
trix fish.morph:

N <- fish.morph
P <- N/sum(N)
rm <- apply(P, 1, sum)
cm <- apply(P, 2, sum)
Y <- as.matrix(log(P)) 
mc <- t(Y) %*% as.vector(rm)
Y <- Y - rep(1,nrow(P)) %*% t(mc)
mr <- Y %*% as.vector(cm)
Y <- Y - mr %*% t(rep(1,ncol(P)))

The group masses are calculated:

fish.centroids.rm <- tapply(rm, fish[,3], sum)

Chapter 11:
Discriminant Analysis
Biplots
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and the four centroids, by weighted averaging of the corresponding rows of Y:

fish.centroids <- tapply(rm * Y[,1], fish[,3], sum)
for(j in 2:ncol(fish.morph)) fish.centroids 
+      <- cbind(fish.centroids, tapply(rm * Y[,j], fish[,3], sum))
fish.centroids <- fish.centroids / fish.centroids.rm

Then the LRA algorithm continues for the four centroids, using the weighted
SVD:

Z <- diag(sqrt(fish.centroids.rm)) %*% fish.centroids %*%
+  diag(sqrt(cm))
svdZ <- svd(Z)
# principal coordinates of centroids, standard coordinates of 
+  variables
FF <- diag(1/sqrt(fish.centroids.rm)) %*% svdZ$u %*% diag(svdZ$d)
GG <- diag(1/sqrt(cm)) %*% svdZ$v

The inertia of the centroids:

inertia.centroids <- sum(Z*Z)
inertia.centroids
[1] 0.000128325

which is 6.5% of the total variance 0.001961 of the individual fish, computed in
Chapter 7.

The biplot of the centroids and variables Exhibit 11.2 has a scaling factor differ-
ence of 50 between the two sets of points, as in Exhibit 7.3.

CA-DA, which is a CA of a concatenated table where a set of variables is cross-tab-
ulated against a single grouping variable, is illustrated by Exhibit 11.3 for the
“women” data set, using the marital status categories in the first five lines of the
matrix women.concat (see Chapter 9). In this case we chose the contribution bi-
plot:

women.ca_da <- ca(women.concat[1;5,])
women.ca_da$rownames <- c(“married”, “widowed”, “divorced”, 
+                    “separated”, “single”)
plot(women.ca_da, map=”rowgreen”) 

(again, as explained in the computations of Chapter 9, if the axes are reversed
compared to Exhibit 11.3, their coordinates can be multiplied by –1).
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To see some basic results of the CA object: principal inertias, their percentages,
the row and column masses, chi-square distances to the centroid, inertias, stan-
dard coordinates, etc, just type the object name:

women.ca_da 
Principal inertias (eigenvalues):

1        2     3      4       
Value    0.029316 0.002915 0.002321 0.000993
Percentage 82.48% 8.2%   6.53%   2.79%   

Rows:
married widowed divorced separated single

Mass 0.554817 0.081633 0.021357 0.032748 0.309445
ChiDist 0.080668 0.413108 0.320868 0.226113 0.213684
Inertia 0.003610 0.013931 0.002199 0.001674 0.014129
Dim. 1 0.403377 2.291677 -0.619362 -0.617888 -1.219648
Dim. 2 -0.656420 2.210670 -2.610218 -0.462015 0.822790

Columns:

etc. … More detailed results can be obtained using the summary function, as ex-
plained before.

The “iris” data set is available in R:

data(iris)

The first four columns contain the variables and the fifth column contains the clas-
sification into the three groups: “setosa“, “versicolor“ and “virginica“
(there are 50 in each group). Read the data into X and calculate the means in G:

X <- iris[,1:4]
n <-nrow(X)
p <-ncol(X)
G <- apply(X[iris[,5]==”setosa”,],2,mean)
G <- rbind(G,apply(X[iris[,5]==”versicolor”,],2,mean)) 
G <- rbind(G,apply(X[iris[,5]==”virginica”,],2,mean)) 
g <- nrow(G) 
rownames(G) <- c(“setosa”, “versicolor”, “virginica”)
colnames(G) <- c(“SepL”,”SepW”,”PetL”,”PetW”)
colnames(X) <- c(“SepL”,”SepW”,”PetL”,”PetW”)

Calculate the three within-group covariance matrices (notice that we prefer the
definition where the sum of squares is divided by n and not n – 1, hence the slight
adjustment by (n – 1)/n = 49/50. 
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C1 <- (49/50)*cov(X[iris[,5]==”setosa”,])
C2 <- (49/50)*cov(X[iris[,5]==”versicolor”,])
C3 <- (49/50)*cov(X[iris[,5]==”virginica”,])

The average within-grouped covariance matrix C is just the arithmetic average
since the groups are the same size (otherwise it should be the weighted average
—see (11.3)):

C <- (C1+C2+C3)/3

To calculate the inverse square root of C, calculate its SVD (or eigenvalue-eigen-
vector decomposition) and then use the inverse square roots of the singular values: 

C.svd <- svd(C)
Cminushalf <- C.svd$u %*% diag(1/sqrt(C.svd$d)) %*% t(C.svd$v)

Calculate the matrix S of (11.4), its SVD and coordinates for the contribution bi-
plot: 

oneg <- rep(1,g)
Ig <- diag(oneg)
S    <- diag(rep(sqrt(1/g),g)) %*% (Ig - (1/g)* oneg %*% t(oneg)) 
+    %*% G %*% Sminushalf * sqrt(1/ncol(G))
S.svd <- svd(S)
S.rpc <- sqrt(g) * S.svd$u %*% diag(S.svd$d)
S.cbp <- S.svd$v 

Calculate the coordinates of the individual n = 150 irises as supplementary points
according to (11.5): 

onen <- rep(1,n)
In <- diag(onen)
S.rsup <- (In - (1/n)* onen %*% t(onen)) %*% as.matrix(X) 
+      %*% Cminushalf %*% S.svd$v * sqrt(1/p)

Plot the groups and individual points in three colours: 

plot(S.rsup, type = “n”, asp=1)
text(S.rsup, labels = “·”, col = c(rep(“green”,50),,
+  rep(“violet”,50) rep(“brown”,50)), cex=2, font = 2)
text(S.rpc, labels = rownames(G), 
+  col = c(“green”,”violet”,”brown”), font = 2, adj=c(0.5,0.5))
text(S.cbp, labels = colnames(G), col = “brown”, cex=0.8, font = 2)
segments(0,0,S.cbp[,1],S.cbp[,2],col=”brown”)
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Variance of the group means (i.e., between-group variance) is the sum of squares
of the elements of the S matrix:

sum(S*S)
[1] 8.11933

The total variance of the points is obtained by calculating the equivalent matrix
for the individuals in the Mahalanobis metric):

S <- sqrt(1/n) * (I - (1/n)* onen %*% t(onen)) %*% as.matrix(X) 
+  %*% Cminushalf * sqrt(1/p) 
sum(S*S)
[1] 9.11933

The difference between these two variance measures is exactly 1, which is the val-
ue of the within-group variance, by construction.

To test whether the between-group variance of 0.000128 in the above example of
the four fish groups is significant, a permutation test consists in randomly shuffling
the set of group labels assigned to the fish, recomputing the between-group vari-
ance each time (we reallocate the labels randomly 9,999 times) and seeing where
the actual figure (which serves as the 10,000th permutation) lies in the permutation
distribution. The following R code does the job, assuming that the same initial
steps of the LRA algorithm are performed (see the 9 commands at the start of the
computations for Chapter 11), ending with Y being the double-centred matrix of
log-transformed data. Notice that the commands in the loop are just a repeat of
the code previously used, but starting each iteration with a random sampling of the
group labels, using the sample function. The initial set.seed(317) operation
can be changed (or omitted) if you want a different set of random permutations.

set.seed(317)       
inertia.perm <- rep(0,10000)
inertia.perm[1] <- inertia.centroids
for(iperm in 2:10000) {

fish.perm<-sample(fish[,3])
fish.centroids.rm <- tapply(rm, fish.perm, sum)
fish.centroids <- tapply(rm * Y[,1], fish.perm, sum)
for(j in 2:ncol(fish.morph)) fish.centroids 

+   <- cbind(fish.centroids, tapply(rm * Y[,j], fish.perm, sum))
fish.centroids <- fish.centroids / as.numeric(fish.centroids.rm)
Z <- diag(sqrt(fish.centroids.rm)) %*% fish.centroids 

+    %*% diag(sqrt(cm))
inertia.perm[iperm] <- sum(Z*Z)
}

A Permutation Test
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To see where the value of 0.000128 lies in the permutation distribution:

which(sort(inertia.perm)==inertia.perm[1])
[1] 9847

so the number of permutations in the tail, including our observed value, is 154,
which shows that it lies in the far upper tail of the distribution, with a p-value of
154/10,000 = 0.0154. A histogram of the permutation distribution, indicating the
position of the observed value is shown in Exhibit A.1.

For the analysis of the fish morphometric data, we first add the body weight of the
fish as a supplementary variable to the unconstrained log-ratio analysis. Again the
nine commands at the start of the computations in Chapter 11 are repeated, up
to the computation of the double-centred Y. Here we show the “column-princi-
pal” or “covariance” biplot, computing the SVD the usual way and then row stan-
dard and column principal coordinates:

Z    <- diag(sqrt(rm)) %*% Y %*% diag(sqrt(cm))
svdZ <- svd(Z)

Exhibit A.1:
Histogram of permutation

distribution showing
observed test statistic. The
p-value is the relative area
of the distribution from the

test statistic to the right 

Chapter 12:
Constrained Biplots
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FF <- diag(1/sqrt(rm)) %*% svdZ$u
GG <- diag(1/sqrt(cm)) %*% svdZ$v %*% diag(svdZ$d)

The body weight variable is standardized and regressed on the coordinates of the
fish on the two dimensions of the morphometric log-ratio analysis. Since the fish
are weighted according to their marginal totals, a weighted regression is per-
formed, using the row masses in rm . Suppose that the body weight variable has
been read into the vector fish.weight, then the R function cov.wt computes
weighted means and variances:

fish.weight.mean  <- cov.wt(as.matrix(fish.weight),wt=rm)$center
fish.weight.var   <- cov.wt(as.matrix(fish.weight),wt=rm)$cov
fish.weight.stand <- (fish.weight-fish.weight.mean)/
+             sqrt(fish.weight.var)
lm(fish.weight.stand~FF[,1]+FF[,2], weights=rm)$coefficients

(Intercept)       FF[, 1]       FF[, 2] 
-5.764505e-15 1.162973e-01 2.025847e-01

The coefficients 0.116 and 0.203 would define an arrow in the LRA biplot but
only 5.5% of the variance of the body weight variable is explained, as can be seen
by executing the summary() of the regression model above:

summary(lm(fish.weight.stand~FF[,1]+FF[,2], weights=rm))

(...)
Coefficients:

Estimate Std. Error t value Pr(>|t|)  
(Intercept) -5.765e-15 1.138e-01 -5.07e-14 1.0000  
FF[, 1] 1.163e-01 1.138e-01 1.022 0.3101  
FF[, 2] 2.026e-01 1.138e-01 1.781 0.0792 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.1138 on 72 degrees of freedom
Multiple R-squared: 0.05531,    Adjusted R-squared: 0.02907 
F-statistic: 2.108 on 2 and 72 DF,  p-value: 0.1290

To constrain the first axis to be perfectly correlated with body weight the defini-
tion of the projection matrix Q in (12.2) is particularly simple, because there is
only a scalar to invert, not a matrix:

Q     <- diag(sqrt(rm)) %*% fish.weight.stand 
+      %*% (1/((t(fish.weight.stand)%*%diag(rm)
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+        %*%fish.weight.stand))) %*% t(fish.weight.stand) 
+        %*% diag(sqrt(rm))
QZ    <- Q %*% Z
svdQZ <- svd(QZ)

The orthogonal projection and corresponding SVD is:

QpZ <- Z - QZ
svdQpZ <- svd(QpZ)

The coordinates of the points are obtained from the first axis of the constrained
analysis, and the first axis of the unconstrained one, and the body weight vector
is obtained by weighted linear regression as before:

FF[,1] <- diag(1/sqrt(rm)) %*% svdQZ$u[,1] 
GG[,1] <- diag(1/sqrt(cm)) %*% svdQZ$v[,1] * svdQZ$d[1]
FF[,2] <- diag(1/sqrt(rm)) %*% svdQpZ$u[,1]
GG[,2] <- diag(1/sqrt(cm)) %*% svdQpZ$v[,1] * svdQpZ$d[1]
fish.weight.coefs <- lm(fish.weight.stand~FF[,1]+FF[,2], 
+                weights=rm)$coefficients

After plotting the row and column points as before (again with two scales), body
weight can be indicated by an arrow, as shown in Exhibit 12.1, as follows:

arrows(0, 0, 0.9*fish.weight.coefs[1], 0.9*fish.weight.coefs[2],
+ lwd=1.5, length=0.10, angle=15)
text(fish.weight.coefs[1], fish.weight.coefs[2], “weight”)

The decomposition of the total variance into constrained and unconstrained
parts:

sum(Z*Z)
[1] 0.001960883
sum(QZ*QZ)
[1] 7.860202e-05
sum(QpZ*QpZ)
[1] 0.001882281
100*sum(QZ*QZ)/sum(Z*Z) 
[1] 4.008501

To perform a permutation test on the percentage of variance of the morphome-
tric data explained by body weight, simply loop over the calculation of this per-
centage for random permutations of the body weight vector. The position of the
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observed percentage of 4.01% in the sorted list of 10,000 permutations (9,999
plus the observed one) estimates the p-value:

set.seed(157)
bodyperm<-rep(0,10000)
total <- sum(Z*Z)
Q <- diag(sqrt(rm)) %*% fish.weight.stand %*%
+ (1/((t(fish.weight.stand) %*% diag(rm) %*% fish.weight.stand))) 
+  %*% t(fish.weight.stand) %*% diag(sqrt(rm))
QZ <- Q %*% Z
bodyperm[1]<-100*sum(QZ*QZ)/total
# start permutations
for(iperm in 2:10000){

fish.weight.stand.perm<-sample(fish.weight.stand)
Q <- diag(sqrt(rm)) %*% fish.weight.stand.perm 
+  %*% (1/((t(fish.weight.stand.perm) %*% diag(rm)
+  %*% fish.weight.stand.perm))) %*% t(fish.weight.stand.perm) 
+  %*% diag(sqrt(rm))
QZ <- Q %*% Z
bodyperm[iperm]<-100*sum(QZ*QZ)/total
}

# find where the observed percentage is in the sorted list
which(sort(bodyperm)==bodyperm[1])
[1] 9991

The observed value is 10th from the top of the 10,000 values and the estimated
p-value is thus 10/10,000 = 0.001.

For the final CCA of the data set “benthos”, we illustrate the use of the function
cca in the vegan package in R (this package needs to be installed separately).
First read in the six environmental variables into the data frame benthos_env.
Notice that this data set has the sites in the rows whereas benthos has the sites in
the columns. For the cca function the sites need to be in the rows in both matri-
ces, hence the use of t(benthos) in the code below. After log-transforming the
environmental variables, the CCA is performed and the points and environmen-
tal variable arrows are plotted:

benthos_env <- log(benthos_env)
library(vegan)
benthos.cca <- cca(t(benthos), benthos_env)
plot(benthos.cca, display=c(“lc”,”bp”,”sp”), type=”n”)
text(benthos.cca, display=”bp”, labels=colnames(benthos_env))
text(benthos.cca, display=”sp”, labels=rownames(benthos)) 
text(benthos.cca, display=”lc”, labels=colnames(benthos)) 
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The plotting options chosen give the asymmetric biplot with sites in standard coor-
dinates and species in principal coordinates (i.e., at weighted averages of the site
points), and the environmental variables as biplot vectors using their regression co-
ordinates on the CCA axes—these biplot coordinates are identical to the (weighted)
correlation coefficients with the axes, since the site coordinates are standardized.

This plot is highly cluttered by all the species labels and so we can prune them
down to the set of species that is most contributing to the display, as we have
shown before in Chapter 8 for the same data set “benthos”. The following code
assigns “.” labels to all species with less than a 1% contribution to the triplot:

benthos.cca.sp <- benthos.cca$CCA$v.eig
benthos.cca.spcon <- benthos.cca$colsum * (benthos.cca.sp[,1]^2 +
+  benthos.cca.sp[,2]^2) / sum(benthos.cca$CCA$eig[1:2])
benthos.names <- rownames(benthos)
benthos.names[benthos.cca.spcon<0.01] <- “·”

Plotting is then repeated as before, but substituting benthos.names for the origi-
nal rownames(benthos) when species labels are plotted:

text(benthos.cca, display=”sp”, labels=benthos.names)

Further R scripts for the three case studies in Chapters 13 to 15 are given in the
supporting website.

The objective of this computational appendix is to educate readers in the use of
R to construct biplots. Seeing and understanding the commands associated with
specific figures in this book will assist users to perform their own analyses and bi-
plots in the same way, as well as make them more proficient in R. Apart from
these scripts, there are additional functions and one software package available
for biplots.

The R functions princomp and prcomp for principal component analysis (PCA)
both have a plotting function biplot. For example, biplot(princomp(X))
draws the biplot of the PCA of the data matrix X. There are always two scales on
the axes, one for the rows and one for the columns (similar to Exhibits 11.2, 12.1
and 12.5, for example). The biplot function (which is actually biplot.prin-
comp or biplot.prcomp depending on which PCA function is used) has some
scaling options for the axes:

scaling=1 form biplot (rows principal, columns standard)
scaling=0 covariance biplot (columns principal, rows standard)

Biplot Software in R
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(in fact, scaling=alpha produces a biplot where rows are scaled by the singu-
lar values to power alpha and the columns to power 1–alpha, so scaling=0.5
gives the symmetric biplot).

In addition there is a general biplot function biplot for plotting two given sets
of points simultaneously.

The ca package described in Chapters 8 to 10 has several biplot options in the
plot.ca function, although they are referred to as “maps”. These are summa-
rized below:

map="rowprincipal" plots rows in principal, columns in standard coordi-
nates

map="colprincipal" plots columns in principal, rows in standard coordi-
nates

map="symbiplot" symmetric biplot, with row and column coordinates
scaled by the square roots of the singular values on
respective axes

map="rowgreen" plots rows in principal, columns in contribution co-
ordinates

map="colgreen" plots columns in principal, rows in contribution co-
ordinates

In addition, there are two options "rowgab" and "colgab", due to Ruben
Gabriel, who proposed multiplying the standard coordinates by the respective
masses, whereas in the contribution biplots "rowgreen" and "colgreen" the
square roots of the masses are used, which gives the specific interpretation in
terms of contributions.

An R package caGUI is available as an interactive front end to the ca package. Fi-
nally, there is an interactive package BiplotGUI for R, mostly aimed at calibrated
biplots, which were illustrated in Chapters 2 and 3 when introducing the biplot
idea through regression and generalized linear models (see comments about cal-
ibrated biplots in the Epilogue).
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APPENDIX

Bibliography

This bibliography is not intended to be complete but rather gives the main liter-
ature and web resources about biplots so that the reader can continue to learn
about this method. 

The term “biplot” originates in Ruben Gabriel’s Biometrika paper in 1971:

• Gabriel, K.R. (1971). The biplot graphic display of matrices with application to
principal component analysis. Biometrika 58, 453–467.

This paper, which at the time of writing has 1008 citations on Google Scholar and
682 on the Science Citation Index (ISI Web of Knowledge), is widely regarded as
the origin of the idea. It is worthwhile to repeat its abstract:

“Any matrix of rank two can be displayed as a biplot which consists of a vec-
tor for each row and a vector for each column, chosen so that any element of
the matrix is exactly the inner product of the vectors corresponding to its row
and its column. If a matrix is of higher rank, one may display it approximate-
ly by a biplot of a matrix of rank two which approximates the original matrix.
The biplot provides a useful tool of data analysis and allows the visual ap-
praisal of the structure of large data matrices. It is especially revealing in prin-
cipal component analysis, where the biplot can show inter-unit distances and
indicate clustering of units as well as display variances and correlations of the
variables.”

A less cited paper by Ruben Gabriel, but nevertheless one of my favourite ones
on the biplot, appeared the following year in the Journal of Applied Meteorology
(Ruben was also well-known for his work as a statistician in weather modification
projects):

• Gabriel, K.R. (1972). Analysis of meteorological data by means of canonical de-
compositions and biplots. Journal of Applied Meteorology 11, 1071–1077.

In this paper he gives the biplot associated with linear discriminant analysis, also
known as canonical variate analysis. He also talks about the vectors linking pairs
of variables in a biplot (like the “links” in log-ratio analysis).
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Another gem is by Dan Bradu and Ruben Gabriel in Technometrics in 1978:

• Bradu, D. and Gabriel, K.R. (1972). The biplot as a diagnostic tool for models
of two-way tables. Technometrics 20, 47–68.

In this paper they show how certain models lead to points lying in straight lines
in the full space of the data, and thus approximately in a biplot that has a good
fit to the data. Thus a subset of row points and/or column points lying in a
straight line in a biplot suggest models in that submatrix of the data. In addition,
orthogonality of the lines suggests a simpler model.

All the above papers are required reading for those interested in the origins of
the technique.

Other authors also had the idea of adding variables to an existing configuration
of points to make joint displays, although they did not call them biplots. For ex-
ample, Doug Carroll’s vector model for preferences is a biplot:

• Carroll, J.D. (1972). Individual differences and multidimensional scaling. In R.N.
Shepard, A.K. Romney, and S.B. Nerlove, eds, Multidimensional Scaling: Theory and
Applications in the Behavioral Sciences (Vol. 1), 105–155. Seminar Press, New York. 

Only one book exists to date specifically on the topic of biplots, by John Gower
and David Hand:

• Gower, J.C. and Hand, D.J (1996). Biplots. Chapman & Hall, London, UK. 

This book is very complete, both on linear and nonlinear biplots, giving a rigor-
ous theoretical treatment of the subject. Another book by John Gower is with co-
authors Sugnet Gardner-Lubbe and Niel le Roux:

• Gower, J.C., Gardner-Lubbe, S. and le Roux, N. (2010). Understanding Biplots.
Wiley, Chichester, UK. 

As far as the vast literature on the singular value decomposition (SVD) is con-
cerned, I mention only two sources, by the author of one of the landmark algo-
rithms for the SVD, Gene Golub in 1971, which seems to be an important year for
the biplot:

• Golub, G.H. and Reinsch, C. (1971). The singular value decomposition and
least squares solutions. In J.H. Wilkinson and C. Reinsch, eds, Handbook for Au-
tomatic Computation, 134–151. Springer-Verlag, Berlin.
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and the other a classic book by Paul Green and Doug Carroll, originally published
in 1976, which was the first time I saw the geometric interpretation of the SVD
(called “basic structure” by these authors)—this book is invaluable as a practical
introduction to matrix and vector geometry in multivariate analysis:

• Green, P.E. and Carroll, J.D. (1997). Mathematical Tools for Applied Multivariate
Analysis, Revised Edition. Academic Press, New York.

Most books or articles that treat the methods presented in this book will have a
section or chapter on biplots and their interpretation in the context of that
method. This is just a tiny selection of some of the literature that can be consult-
ed, and by no means the primary references:

Principal component analysis
• Joliffe, I.T. (2002). Principal Component Analysis (2nd edition). Springer, New

York. 

Log-ratio analysis (unweighted form)
• Aitchison, J. and Greenacre, M. (2002). Biplots of compositional data. Applied

Statistics 51, 375–392.

Log-ratio analysis (weighted form)
• Greenacre, M. and Lewi, P.J. (2009). Distributional equivalence and subcom-

positional coherence in the analysis of compositional data, contingency tables
and ratio scale measurements. Journal of Classification 26, 29–54.

Correspondence analysis
• Greenacre, M. (2007). Correspondence Analysis in Practice (2nd edition). Chap-

man & Hall/CRC, London. Spanish translation may be freely downloaded at:
http://www.fbbva.es and http://www.multivariatestatistics.org

Multiple correspondence analysis
• Greenacre, M. and Blasius, J., eds (2006). Multiple Correspondence Analysis and

Related Methods, Chapman & Hall/CRC Press, London. 
• Michalidis, G. and de Leeuw, J. (1998). The Gifi system for descriptive multi-

variate analysis. Statistical Science 13, 307–336. 

Discriminant analysis/centroid biplots
• Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical

Learning (2nd edition). Springer, New York. This book may be freely down-
loaded at http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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Constrained biplots
• Legendre, P. and Legendre, L. (1998). Numerical Ecology (2nd edition). Elsevi-

er, Amsterdam.

Finally we give some resources on the internet, on R packages relevant to this
book (in alphabetic order of package names).

• Thioulouse, J. and Dray, S. (2007). Interactive multivariate data analysis in R
with the ade4 and ade4TkGUI packages. Journal of Statistical Software. Download
from http://www.jstatsoft.org/v22/i05/paper

• De Leeuw, J. and Mair, P. (2009). Simple and canonical correspondence analy-
sis using the R package anacor. Journal of Statistical Software. Download from
http://www.jstatsoft.org/v31/i05/paper

• De Leeuw, J. and Mair, P. (2009). Gifi methods for optimal scaling in R: the
package homals. Journal of Statistical Software. Download from:
http://www.jstatsoft.org/v31/i04/paper

• La Grange, A., le Roux, N. and Gardner-Lubbe, S. (2000). BiplotGUI: Interac-
tive biplots in R. Journal of Statistical Software. Download from:
http://www.jstatsoft.org/v30/i12/paper

• Nenadić, O. and Greenacre, M. (2007). Correspondence analysis in R, with
two- and three-dimensional graphics: The ca package. Journal of Statistical Soft-
ware. Download from http://www.jstatsoft.org/v20/a03/paper

• Markos, A. (2010). caGUI: a Tcl/Tk GUI for the functions in the ca package.
Download from http://cran.r-project.org/web/packages/caGUI/index.html

• Graffelman, J. (2010). calibrate: Calibration of scatterplot and biplot axes. Down-
load from http://cran.r-project.org/web/packages/calibrate/index.html

• Oksanen, J. (2010). vegan: Community Ecology Package. Download from
http://cran.r-project.org/web/packages/vegan/index.html

And some relevant websites:

http://www.multivariatestatistics.org

Supporting website for the series of statistics books published by the BBVA
Foundation, including the present book Biplots in Practice, with glossary of
terms and chapter summaries in Spanish, as well as supplementary material
such as animated graphics and links to the data sets and R code.
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http://www.carme-n.org

Correspondence Analysis and Related Methods Network, with R scripts and
data from this book, from Correspondence Analysis in Practice, Second Edition,
and from Multiple Correspondence Analysis and Related Methods.

http://gifi.stat.ucla.edu

Jan de Leeuw’s website for the Gifi system (centred around multiple corre-
spondence analysis and related methods) and R functions

http://www.imperial.ac.uk/bio/research/crawley/statistics

Michael Crawley’s material from his book Statistics: an Introduction Using R

http://www.issp.org

Source of many data sets from the International Social Survey Program

http://www.r-project.org

The R project for statistical computing

http://cc.oulu.fi/~jarioksa/softhelp/vegan.html

Jari Oksanen’s website for the vegan package in R, a very complete package
which includes PCA, CA, CCA and many more multivariate methods, as well as
permutation tests.

http://people.few.eur.nl/groenen/mmds/datasets

Website with data sets from book Modern Multidimensional Scaling by Ingwer
Borg and Patrick Groenen 

http://biplot.usal.es/ClassicalBiplot/index.html

Website of José Luis Vicente Villardon’s biplot software for biplots and simple
correspondence analysis
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APPENDIX

Glossary of Terms 

In this appendix an alphabetical list of the most common terms used in this book
is given, along with a short definition of each. Words in italics refer to terms which
are contained in the glossary.

— adjusted principal inertias: a modification of the results of a multiple correspon-
dence analysis that gives a more accurate and realistic estimate of the inertia ac-
counted for in the solution.

— aspect ratio: the ratio between a unit length on the horizontal axis and a unit
length on the vertical axis in a graphical representation; should be equal to 1
for any biplot or map that has a spatial interpretation.

— asymmetric biplot/map: a joint display of the rows and columns where the two
clouds of points have different scalings (also called normalizations), usually one
in principal coordinates and the other in standard coordinates.

— biplot: a joint display of points representing the rows and columns of a table
such that the scalar product between a row point and a column point approxi-
mates the corresponding element in the table in some optimal way.

— biplot axis: a line in the direction of a biplot vector onto which points can be pro-
jected in order to estimate values in the table being analysed. 

— biplot vector: a vector drawn from the origin to a point in a biplot, often repre-
senting a variable of the data matrix, or a supplementary variable. 

— bootstrapping: a computer-based method of investigating the variability of a sta-
tistic, by generating a large number of replicate samples, with replacement,
from the observed sample.

— Burt matrix: a particular matrix of concatenated tables, consisting of all two-way
cross-tabulations of a set of categorical variables, including the cross-tabula-
tions of each variable with itself.  

— calibration: the process of putting a scale on a biplot axis with specific tic-marks
and values.
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— canonical correspondence analysis (CCA): extension of correspondence analysis to in-
clude external explanatory variables; the solution is constrained to have di-
mensions that are linearly related to these explanatory variables.

— centroid: weighted average point.

— chi-square distance: weighted Euclidean distance measure between profiles, where
each squared difference between profile elements is divided by the corre-
sponding element of the average profile; the distance function used in corre-
spondence analysis.

— classical scaling: a version of multidimensional scaling which situates a set of
points in multidimensional Euclidean space, based on their interpoint dis-
tances or dissimilarities, and then projects them down onto a low-dimension-
al space of representation.

— concatenated table: a number of tables, usually based on cross-tabulating the
same individuals, joined together row-wise or column-wise or both. 

— contingency table: a cross-tabulation of a set of cases or objects according to two
categorical variables; hence the grand total of the table is the number of cases. 

— contribution to variance/inertia: component of variance (or inertia) accounted for by
a particular point on a particular principal axis; these are usually expressed rela-
tive to the corresponding principal variance (or principal inertia) on the axis (giving
a diagnostic of how the axis is constructed) or relative to the variance (or inertia)
of the point (giving a measure of how well the point is explained by the axis).

— contribution (or standard) biplot: biplot in which one set of points, usually the vari-
ables, is normalized so that their squared coordinates are the parts of variance
(or inertia) on the respective axes; this scaling facilitates the interpretation of
the solution space.

— correspondence analysis (CA): a method of displaying the rows and columns of a
table as points in a spatial map, with a specific geometric interpretation of the
positions of the points as a means of interpreting the similarities and differ-
ences between rows, the similarities and differences between columns and the
association between rows and columns. Fundamental concepts in the defini-
tion of CA are those of mass and chi-square distance.

— covariance biplot: asymmetric biplot where the variables (usually columns) are in
principal coordinates, thus approximating the covariance structure of the vari-

BIPLOTS IN PRACTICE

206



ables (i.e., lengths of biplot vectors approximate standard deviations, angle
cosines between biplot vectors approximate correlations), and the rows (usu-
ally cases) in standard coordinates.

— dimension: in the context of biplots, a synonym for axis.

— dimensionality: the number of dimensions inherent in a table needed to re-
produce its elements exactly in a biplot or map; in this context it is synonymous
with the rank of the matrix being analyzed.

— dimension reduction: the action of finding fewer dimensions than the dimension-
ality of a matrix, which can reproduce the matrix optimally.

— dissimilarity: a measure of difference between objects which is like a distance
but does not satisfy the triangular inequality.

— distance: a measure of difference between pairs of objects which is always pos-
itive or zero, and zero if and only if the objects are identical, and furthermore
satisfies the triangular inequality.

— double centring: an operation applied to a data matrix which first subtracts the
row means from each row of the matrix, and then subtracts the columns
means from each column of the row-centred matrix. Often the centring in-
cludes weights on the rows and the columns (e.g., the masses in correspondence
analysis and log-ratio analysis). The (weighted) means of the rows and the
columns of a double-centred matrix are all 0.

— dual biplots: a pair of asymmetric biplots which are versions of the same singular-
value decomposition; usually, the allocation of the singular values to the left or
right matrix of singular vectors is what distinguishes the pair.

— dummy variable: a variable that takes on the values 0 and 1 only; used in one
form of multiple correspondence analysis to code multivariate categorical data.  

— eigenvalue: a quantity inherent in a square matrix, forming part of a decom-
position of the matrix into the product of simpler matrices. A square matrix
has as many eigenvalues and associated eigenvectors as its rank; in the context
of biplots, eigenvalue is a synonym for the principal variance or principal inertia.

— Euclidean distance: distance measure between vectors where squared differ-
ences between corresponding elements are summed, followed by taking the
square root of this sum.
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— form biplot: asymmetric biplot where the cases (usually rows) are in principal coor-
dinates, thus approximating distances between cases, and the columns (usual-
ly variables) in standard coordinates.

— generalized linear model (GLM): a generalization of linear regression, where there
are several possible transformations of the mean of the response variable and
several possible choices of the conditional probability distribution; examples
are Poisson regression (transformation: logarithm; probability distribution:
Poisson) and logistic regression (transformation: logit, or log-odds; probabili-
ty distribution: binomial). 

— generalized linear model biplot: similar to the regression biplot , except that the coef-
ficients are obtained through a generalized linear model; hence any calibrations of
the biplot axes are not at equal intervals as in regression biplots, but reflect the
transformation of the mean of the corresponding response variable.

— gradient: in optimization theory, the vector of partial derivatives of a multivari-
able function with respect to its variables, indicating the direction of steepest
ascent of the function; when the function is linear (e.g., a regression equa-
tion), then the gradient is simply the vector of coefficients of the variables. 

— indicator matrix: the coding of a multivariate categorical data set in the form of
dummy variables.

— inertia: weighted sum of squared distances of a set of points to their centroid; in
correspondence analysis the points are profiles, weights are the masses of the pro-
files and the distances are chi-square distances.

— interactive coding: the formation of a single categorical variable from all the cat-
egory combinations of two or more categorical variables. 

— joint correspondence analysis (JCA): an adaptation of multiple correspondence analy-
sis to analyse all unique two-way cross-tabulations of a set of categorical vari-
ables (contained in the Burt matrix) while ignoring the cross-tabulations of
each variable with itself.

— left matrix: the first matrix in the decomposition of the target matrix, which pro-
vides the coordinates of the rows in a biplot.

— linear discriminant analysis: a dimension-reduction method which aims to opti-
mally separate the centroids of groups of multivariate points, using the Maha-
lanobis distance to define distances between points.
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— link vector: the vector in a biplot that joins two points and thus represents the
difference vector between the two (e.g., the difference between two vari-
ables).

— log-ratio: given two elements in the same row or same column of a strictly pos-
itive data matrix, this is the logarithm of the ratio of the values.

— log-ratio analysis: a dimension-reduction method for a table of strictly positive
data all measured on the same scale, based on log-transforming the data and
double-centring before decomposing by the singular value decomposition. The
rows and columns are preferably weighted, usually proportional to the mar-
gins of the table. Log-ratio analysis effectively analyzes all log-ratios in the rows
and the columns of the table.

— log-ratio distance: the distance function underlying log-ratio analysis, based on
the differences between all log-ratios in the rows or in the columns.

— Mahalanobis distance: a distance function used in linear discriminant analysis,
which aims to de-correlate and standardize the variables within each of the
groups being separated.

— map: a spatial representation of points with a distance or scalar product inter-
pretation.

— mass: a weight assigned to a point; in correspondence analysis and log-ratio analy-
sis, the row and column masses are the marginal totals of the table, divided by
the grand total of the table.

— monotonically increasing function: a function that steadily increases as its argu-
ment increases; that is, its derivative (or slope) is always positive.

— multidimensional scaling (MDS): the graphical representation of a set of objects
based on their interpoint distances or dissimilarities.

— multiple correspondence analysis (MCA): for more than two categorical variables,
the correspondence analysis of the indicator matrix or Burt matrix formed from the
variables.

— nested principal axes: a property of a biplot or map where solutions consist of a
set of uncorrelated principal axes which combine in an ordered way: for ex-
ample, the best three-dimensional solution consists of the two axes of the best
two-dimensional solution plus the third axis.   
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— normalization: refers to the scale of a variable or a principal axis in terms of its
variance; for example, a variable divided by its standard deviation is normal-
ized to have variance 1, while the principal coordinates of a set of points on a par-
ticular axis have a normalization equal to the eigenvalue (principal variance or
principal inertia) of that axis.

— permutation test: generation of data permutations, either all possible ones or a
large random sample, assuming a null hypothesis, in order to obtain the null
distribution of a test statistic and thus estimate the p-value associated with the
observed value of the statistic.

— principal axis: a direction of spread of points in multidimensional space that
optimizes the variance or inertia displayed; can be thought of equivalently as
an axis which best fits the points in a least-squares sense, often weighted. 

— principal component analysis (PCA): a method of dimension reduction which at-
tempts to explain the maximum amount of variance in a data matrix in terms
of a small number of dimensions, or components.

— principal coordinates: coordinates of a set of points projected onto a principal
axis; the (weighted) sum of squared coordinates of the points along an axis
equals the principal inertia on that axis. 

— principal inertia (or principal variance): the inertia (or variance) displayed along
a principal axis; often referred to as an eigenvalue.

— profile: a row or a column of a table divided by its total; the profiles are the
points visualized in correspondence analysis.   

— projection: given a point in a high-dimensional space, its projection onto a low-
dimensional subspace refers to that point closest to the original point; the ac-
tion of projection is usually perpendicular to the subspace.

— projection matrix: a matrix which when multiplied by a vector gives the projec-
tion of that vector on a low-dimensional subspace.

— rank: the rank of a matrix in a geometric context is the number of dimensions
needed to reproduce the matrix exactly.

— redundancy analysis (RDA): extension of principal component analysis to include
external explanatory variables; the solution is constrained to have dimensions
that are linearly related to these explanatory variables.
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— regression biplot: a biplot which has as its system of display axes a set of ex-
planatory variables (in the simplest case, two variables), showing firstly a set
of case points in terms of these variables and secondly a set of biplot vectors
with coordinates defined by regression coefficients from the respective linear
regressions of response variables on the explanatory variables. If the axes are
standardized, then the biplot vectors are defined by the standardized regres-
sion coefficients.

— right matrix: the second matrix in the decomposition of the target matrix, which
provides the coordinates of the columns in a biplot.

— scalar product: for two point vectors, the product of their lengths multiplied by
the cosine of the angle between them; directly proportional to the projection
of one point on the vector defined by the other. 

— scree plot: a bar chart of the set of eigenvalues (principal variances or inertias) as-
sociated with a biplot, in descending order of magnitude.

— simplex: a triangle in two dimensions, a tetrahedron in three dimensions, and
generalizations of these geometric figures in higher dimensions; in corre-
spondence analysis J-element profiles lie inside a simplex defined by J vertices in
(J –1)-dimensional space.

— singular value decomposition (SVD): the decomposition of a matrix into the prod-
uct of three matrices with simple structure: the matrix of left singular vectors
multiplied by the diagonal matrix of singular values (all positive and in de-
scending order) multiplied by the transposed matrix of right singular vectors.
The SVD is the natural generalization of the eigenvalue–eigenvector decom-
position, but applicable more generally to rectangular matrices.

— standard coordinates: coordinates of a set of unit points projected onto principal
axes—their (weighted) sum of squares along an axis equals 1. 

— standardized regression coefficient: a regression coefficient that corresponds to a
variable that has been normalized to have variance (or inertia) 1. 

— subset correspondence analysis: a variant of correspondence analysis which allows
subsets of rows and/or columns to be analysed, while maintaining the same
chi-square distance function and point masses as for the full table.

— supplementary point: a point which has a position (e.g., a vector of data in prin-
cipal component analysis or a profile in correspondence analysis) with mass set
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equal to zero; in other words, a supplementary point is displayed on the map
but has not been used in the construction of the map.

— supplementary variable: a variable which is positioned in a map by (weighted)
least-squares regression on the principal axes; the variable is usually depicted as
a vector with coordinates equal to the regression coefficients.

— symmetric map: a simultaneous display of the principal coordinates of the rows of
a matrix and the principal coordinates of its columns. While the distance geom-
etry of both rows and columns is shown, this map is not a biplot, but approxi-
mates one if the eigenvalues of the axes are not too different.

— target matrix: a matrix which is decomposed into the product of two matrices,
the left and right matrices, which provide the coordinates for the rows and
columns respectively in a biplot.

— transition formula: the relationship between the row points and column points
in a map or a biplot.

— triangular inequality: a property of a true distance function whereby the dis-
tance between two objects is necessarily less than or equal to the sum of the
distances from the two objects to a third one.

— triplot: a biplot showing, in addition, a third set of points or vectors correspon-
ding to the explanatory variables which constrain the solution, for example in
canonical correspondence analysis or redundancy analysis.

— vertex: a unit point in multidimensional space, with all elements zero except
one with value 1, usually a unit profile in CA which delimits the simplex within
which the points in CA lie.

— weighted Euclidean distance: similar to Euclidean distance, but with a positive
weighting factor for each squared difference term. 
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APPENDIX

Epilogue

Up to now this book has presented known facts about the theory and practice of
biplots. In this final section I give my personal opinions about biplots and their
use in practice. For, as the title of the book declares, this book is mainly about the
practice and indeed the usefulness of this method as a research tool. I start off
with a reflection of what the term “biplot” means and then treat some specific as-
pects which have a greater or lesser repercussion when it comes to practical ap-
plications.

In my understanding of the term, a biplot is a representation of the rows and the
columns of a data matrix in a joint display, with few dimensions, usually two-di-
mensional but nowadays possibly three-dimensional when viewed with special
software such as R’s rgl package. Because of the orthogonality and nested prop-
erty of the principal axes of a biplot, further dimensions can be studied separate-
ly, for example, by considering axes 3 and 4 of the solution space in a planar dis-
play (see Exhibit 14.11, for example, where different planar projections were
displayed). The essential feature of the biplot is that it displays scalar products be-
tween row and column points of a target matrix (the data matrix, appropriately
centred and normalized), according to the fundamental result in Gabriel’s origi-
nal paper, formulated in Chapter 1 as:

target matrix = left matrix · right matrix

(see also the abstract from Ruben Gabriel’s original article, which is reproduced
in the Bibliography). The left and right matrices of low rank (dimensionality), ob-
tained conveniently from the singular value decomposition (SVD), provide re-
spective row and column coordinates that are used to plot the rows and columns
as points or vectors as the case may be.

Let us suppose for convenience of description that the rows have been plotted as
points and the columns as vectors drawn from the origin of the display. The idea
of plotting columns as vectors gives the idea that each column has been regressed
on the axes of the biplot and the vector actually represents the regression plane
(or hyperplane for a three-dimensional biplot). This plane is defined uniquely by
the vector that indicates the direction of steepest ascent of the plane, that is the
gradient vector with elements equal to the regression coefficients. Since contours
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(or isolines) of a plane are at right-angles to this gradient vector, estimated values
of each row for that column can be obtained by projecting them onto the biplot
axis through the vector.

These are thus the basic properties of a biplot. Variations exist, for example the
row points could be approximating a particular interpoint distance, or they could
be standardized along principal axes. Then there are nonlinear transformations
of the data, which induce biplot axes with nonlinear scales, or weighting of the
points when determining the solution space, but the biplot basically results in two
sets of points, one of which is optionally drawn as a set of vectors.

The idea of calibrating biplot axes adds understanding about how the biplot
works and how to interpret it. As shown in Chapters 2 and 3, adding tic marks to
a biplot axis that passes through a biplot vector and then calibrating the axis ac-
cording to the original scale of the corresponding variable, gives insight to what
the biplot vector actually represents. But, when a user has digested this fact once
and for all, I can see no practical purpose in leaving the calibrations on the final
analyses reported in research findings. Firstly, it is only possible to include cali-
brations when biplot axes are few, which is seldom the case apart from small ed-
ucational examples; secondly, they clutter up the display and detract from its sim-
plicity; and thirdly, they do not allow one to define a meaningful length of the
biplot vector, which can be a useful aspect of the biplot’s interpretation (see, for
example, the contribution biplot, discussed again below).

The comments above about calibrated biplots lead naturally into the subject of
what constitutes good graphical design for a biplot display. The objective should
be to include as little as possible, but enough for the user to make a correct in-
terpretation of what is presented. Overloading the biplot with calibrations, for ex-
ample, for every biplot axis is not necessary, since it is known that the centre of
the biplot represents the (weighted) average of each variable (data matrices are
almost always centred) and all one needs to see is how the points line up on a bi-
plot axis above and below their average. Knowing the scale of the biplot is rele-
vant, but the tic marks and calibrations on the principal axes should be few and
discrete; sometimes we have added principal variances (or inertias) and their per-
centages to axes, or simply mentioned these in the text or caption. Including what
Tufte calls “chartjunk” just increases the biplot’s ink-to-information ratio unnec-
essarily, but things like coloured labels, symbols of different sizes and textures are
all useful instruments for communicating more about the plot. Omitting labels of
uninteresting points is also a useful strategy. Consider the two versions of the
same correspondence analysis solution in Exhibit D.1, performed on a table of
fatty acid compositions for a sample of fish. The upper biplot is the asymmetric
one with row points (fish, displayed by dots) in principal coordinates and column

Calibration of biplot axes

Good biplot design
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Exhibit D.1:
Two versions of the same
correspondence analysis of
a data set of compositions
of 40 fatty acids in 42 fish:
on top, the asymmetric
(“rowprincipal”) biplot,
including all the points; at
the bottom, the contribution
biplot, with only the most
contributing fatty acids
shown
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points in standard coordinates, and because of the very low inertia in these data
two scales are necessary. This biplot is very cluttered with points and the fact that
there are three groups of fish is partly obscured; also, it would be even worse if we
added the vectors to the variable points (the fatty acids). The lower biplot is the
contribution biplot, which only needs one scale and where only fatty acids are dis-
played that contribute more than average to the principal axes, which gives a
much cleaner and easier to interpret solution. Only six out of the original 40 fatty
acids remain and it is seen clearly that there are mainly three fatty acids, each
associated with one of the three groups. Furthermore, the fatty acid 16:1(n–7)
which is responsible for characterizing the group of fish at bottom left is not at all
clear in the upper biplot, where one might have thought that the most important
one was 16:1(n–9). Since these six fatty acids are the major contributors, the bi-
plot would remain almost the same if the other 34 fatty acids were removed from
the data set and a subset correspondence analysis performed.

The dimension-reduction step is necessary to be able to visualize a high-dimen-
sional data set in a few dimensions, but variance (or inertia) is lost in the process.
There is a measure of variance retained and variance lost, in raw amounts or per-
centages, and also numerical diagnostics for how much variance of each point,
row or column, is retained in the solution and how much is lost. On the other
hand, the solution space is determined by different rows and columns in varying
amounts. A point may be displayed accurately in a biplot, with little variance lost,
but it could have played almost no role in determining the solution (the reverse
is not true: points that generally determine the solution are usually quite accu-
rately displayed). The contributions, both of the solution to the variances of in-
dividual points and of the points to the solution space, are important numerical
diagnostics that support the interpretation of the biplot.

The idea of incorporating the contribution of a column (for example) into the
length of its corresponding vector is, in my opinion, one of the most important
variations of the biplot display. Users have difficulty in deciding which vectors are
important for the interpretation of the biplot, so by rescaling individual vectors
to correspond to their part contributions to the principal axes, the important vec-
tors are immediately made more evident to the user, since their lengths along
principal axes are the longest.

So why do we not always use the contribution biplot? The answer is, very simply,
that in gaining this property of the interpretation, another property is inevitably
lost. For example, in the correspondence analysis (CA) of the “benthos” data set,
the standard coordinates of the species points indicate vertex, or extreme unit
profile, positions and each sample point lies at a weighted average of the species
points, using the sample’s profile elements across species as weights (see Exhibit

Quality of a biplot

The contribution biplot

BIPLOTS IN PRACTICE

216



8.3)—this is often called the barycentric property of CA. When the standard coordi-
nates are multiplied by the square roots of their masses to reduce them to their
contribution coordinates, this property is lost but now the main contributing
species are visible. In the log-ratio analysis of the data set “morphology” in Chap-
ter 7, the ability to detect equilibrium relationships when variables fall on straight
lines (see Exhibit 7.3) would clearly be lost if each variable were rescaled into its
position in terms of contribution coordinates. So, as I said in the Epilogue to Cor-
respondence Analysis in Practice, you cannot “have your cake and eat it too”—all the
desirable properties one might like to have in a biplot cannot be included in one
display, although we can introduce additional graphical “tricks” such as omitting
the labels of low contributing points and making the size of symbols related to an
omitted aspect of the data, such as the point masses (see Exhibit 8.3, for example).

The solution of a biplot is found by performing a weighted least-squares fit of the
product of the left and right matrices to the target matrix, a solution that is con-
veniently encapsulated in the SVD. One way of computing the SVD is by a process
known as alternating least squares. Suppose that the target matrix is S and the ap-
proximation S ≈ XYT is sought. Writing this approximation as an equality by in-
cluding a matrix of residuals, or “errors”:

S = XYT + E

is recognizable as a regression problem if either X or Y T is fixed. For example, for
a fixed X the least-squares solution for YT is (XTX)–1XTS. If there are weights asso-
ciated with the rows of the matrix, where the weights are in the diagonal matrix
Dw , then the weighted least-squares solution for YT would be (XTDw X)–1XTDw S.
Having estimated YT, it is regarded as fixed and a similar regression, with or with-
out weights, is performed to estimate a new X. From step to step it can be proved
that the residual sum of squared errors reduces, so the process is repeated until
the solution converges. At each step the estimates have to be orthonormalized:
for example, the left matrix X would be orthonormalized so that XTDw X = I, which
means that the regression step is just a matrix multiplication.10 The main point is
that the left and right matrices are solutions of alternative regressions, with or
without weights.

Computation of a biplot
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10. This is the more complicated aspect of this algorithm, which we omit here. In practice the dimensions can
be computed one at a time: start with any vector x with the same number of elements as rows of S and
which has been normalized as xTx =1, then a solution for y simplifies as STx; then normalize y so that yTy = 1
and estimate x as Sy; normalize x and continue this process until convergence, which gives the first pair of
singular vectors, the singular value α being the norm of the final x or y before being normalized to 1. This
first dimension is then subtracted out from S,. i.e. S is replaced by S − α xyT (using normalized x and y)
and the process is repeated to find the solution for the second dimension. The only difference when
weighted solutions are required is to normalize x and y at each step using the weights, and use weighted
least-squares regression in each step, which leads to the solution of a weighted SVD.



Since there are variations of the biplot display, the question arises as to how each
variation approximates the original data. The answer is quite simply that the ap-
proximation is always the same, with the definition of row and column weights de-
pending on the scaling of the biplot coordinates. The different biplots of a CA il-
lustrate what is meant. In Chapter 8, equation (8.2) defined correspondence
analysis in terms of the regular unweighted SVD of the matrix of standardized
residuals Dr

–½(P − rcT)Dc
–½:

Dr
–½(P – rcT)Dc

–½ = UDαV
T, where UTU = VTV = I

(notice here that the identification conditions on U and V do not contain
weights). If we were interested in biplotting the standardized residuals them-
selves, we would use coordinate matrices such as UDα and V, or UDα

½ and VDα
½ for

example. But CA is not biplotting the standardized residuals—in the case of the
asymmetric CA biplots, for example, one set of points is plotted in principal co-
ordinates and the other set in standard coordinates, for example F = Dr

–½UDα

for rows and Γ = Dc
–½ V for columns, or Φ = Dr

–½U for rows and G = Dc
–½ VDα for

columns—see the definitions in (8.3) and (8.4). In order to have the correspon-
ding matrix of scalar products on the right hand side of the CA definition, the tar-
get matrix in the defining equation becomes:

Dr
–1PDc

–1 − 11T = ΦDαΓT, where ΦTDrΦ = ΓTDcΓ = I

i.e., in various scalar forms: pij /(ricj) − 1 = (pij /ri − cj)/cj = (pij /cj − ri )/ri = Σk
αkφikγjk

(the first form shows the ratio of the data element to its expected value, while the
second and third forms show how the asymmetric map represents the profiles’ de-
viations from their expected values relative to their expected values). This defines
a generalized (or weighted) SVD where the rows and columns are weighted by the
row masses r and column masses c respectively. Associating the singular values
with the left or right singular vectors in this version of the definition (the stan-
dard coordinates) will give the two types of asymmetric biplot and the low-di-
mensional approximation of the scalar products to the target matrix is by weight-
ed least-squares using the masses. 

The form of the definition for the contribution biplot, where the column points,
for example, are rescaled by the square roots of their respective masses, plots F
and V jointly. This implies the generalized SVD in terms of the row profiles Dr

–1P:

(Dr
–1P − 1cT)Dc

–½ = ΦDαVT, where ΦTDrΦ = VTV = I

that is, with rows weighted by the row masses r, and columns unweighted. The tar-
get matrix consists of the standardized profile elements (pij /ri − cj)/cj

½, hence the

The optimality of a biplot
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alternative name of standard biplot for the contribution biplot. The weighting
makes sense since the row profiles should be weighted but not the columns,
which have already been standardized.

Another development of the biplot is that of so-called “nonlinear” biplots, where
variables are represented by curves and estimation of the values for each case on
a particular variable is performed by finding the point on the curve closest to the
case. While being of theoretical interest, nonlinear biplots are unlikely to find
favour amongst users because of their complexity of interpretation, which de-
tracts from the simplicity of the “linear” biplot treated in this book and its desir-
able properties such as decomposition of variance, nesting of dimensions and par-
allel contours for each biplot axis. It is extremely difficult to make any deductions
about the properties of variables and their inter-relationships when they are rep-
resented by different curves. My view is that it is much better, from a practical
point of view, to consider appropriate nonlinear transformations of the original
variables, which users and non-specialists can understand, and then use the linear
biplot, bearing in mind the nonlinear scales of the resulting biplot axes.

The SVD as a mathematical result has been known for more than a century, and
its property of identifying matrix approximations of any desired rank by (weight-
ed) least squares makes it the most useful matrix result in the area of multivariate
data analysis. Algorithms for computing the SVD are well-researched and provide
global optima for the dimension-reducing methods that have been presented in
this book. The SVD has appeared, is appearing and will appear in every area of
scientific research where tabular data are collected. Wherever there is an SVD,
there is a biplot. Data are often collected by a painstaking and expensive process
and I have always thought it a pity that the richness of a data set is not fully ex-
posed to the researcher who has taken so much trouble to collect it. The biplot is
a tool for exploring complex data sets of all types and sizes. The future of the bi-
plot is in its further application in many different areas of research, to make data
more transparent to the researcher, and to assist in the interpretation and in the
discovery of structures and patterns, both suspected and unsuspected.

Nonlinear biplots

The future of biplots
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percentage of variance, 27, 32, 33
plane, 28E-29E
standardized coefficients, 27, 33, 170
steepest of plane, 28

right matrix, 19, 23, 52-53, 58, 211-213,
217

scalar product, 19-21, 24, 61, 205, 209,
211

geometric interpretation, 20
scatterplot, 10E, 15-17, 23, 28, 76E, 156E

three-dimensional, 18E
scree plot, 64-65, 129, 131E, 177, 211

elbow, 65
simplex, 211-212
singular value, 52, 54, 58, 61-62, 64

in multiple correspondence analysis,
102, 186

adjusted, 103-104
decomposition, 51-58, 59-63, 77, 82,

115, 122-123, 176, 207, 209, 211,
213, 217, 219
bibliography, 200-201
generalized (or weighted), 54-56,

58, 217-218
singular vector, 52, 54, 58, 66

generalized, 56
stacked table, see concatenated table
standard biplot, 67, 206

coordinate, 61, 66, 82, 84, 92, 123, 180,
205, 206, 208, 211
in multiple correspondence analysis,

102
deviation, 63

standardized regression coefficient, 211
statistical learning, 129, 137
steepest ascent, see regression
subset correspondence analysis, 142-145,

147-149, 151, 211
MCA, 143E-144E, 149E-150E, 152

supplementary point, 54, 91, 96-97, 103,
108, 116, 211

in multiple correspondence analysis,
105-106

variable, 205, 212
SVD, see singular value decomposition
symmetric biplot, 54-55

map, 92, 212

target matrix, 19, 23, 52, 58, 208, 212-213,
217

test set, 137
trace, 52
training set, 137

INDEX

235



transformation inverse logit, 41
logarithmic, 70
logit, 40
log-ratio, 119
monotonically increasing, 38
nonlinear, 214, 219
see data transformation

transition formula, 116, 212
transpose, 19
triangular inequality, 207, 212
triplot, 124, 126E-127, 212
t-test, 111-112

variance between and within group, 110-111,
116, 134
decomposition, 65E, 110-111

constrained and unconstrained parts,
123-125, 127

vertex, 83-84, 92, 211-212

weight, 54-56
zero, 54

weighted average, see centroid
Euclidean distance, 212

weighting, 54-56
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