
Biplots in Practice

MICHAEL GREENACRE

Professor of Statistics at the Pompeu Fabra University

Appendix A Offprint

Computation of Biplots

First published: September 2010
ISBN: 978-84-923846-8-6

Supporting websites:
http://www.fbbva.es

http://www.multivariatestatistics.org

© Michael Greenacre, 2010
© Fundación BBVA, 2010

APPENDIX

Computation of Biplots

In this appendix the computation of biplots is illustrated using the object-orien-
tated programming language R, which can be freely downloaded from the R-pro-
ject website:

http://www.r-project.org

It is assumed that the reader has some basic knowledge of R—if not, consult some
of the web resources and tutorials given on this website and in the bibliography.
An R script file is given on the website:

http://www.multivariatestatistics.org

as well as the data sets, so that readers can reproduce the biplots described in this
book. The idea in this Appendix is to explain some of these commands, and so
serves as an R tutorial in the context of the material presented in this book.

R commands will be indicated in slanted typewriter script in brown, while the re-
sults are given in non-slanted green. A + at the start of a line indicates the con-
tinuation of the command (in the script file the command is given as a single
line). Notice that the idea in this appendix is to educate the user in the use of R
by showing alternative ways of arriving at biplot solutions, including different ways
of plotting the final results. In some cases the R code might not be the most effi-
cient way of arriving at the final goal, but will illustrate different functions in the
R toolbox that can be learnt by example.

There are two recommended ways of reading data into R. Suppose that you want
to read in the data in Exhibit 1.1. These data are either in a text file or an Excel
file, for example. Suppose that the file EU2008.txt is in your R working direc-
tory and contains the following:

X1 X2 X3
Be 19200 115.2 4.5
De 20400 120.1 3.6
Ge 19500 115.6 2.8
Gr 18800 94.3 4.2
Sp 17600 102.6 4.1

Reading data into R

167

A

Fr 19600 108.0 3.2
Ir 20800 135.4 3.1
It 18200 101.8 3.5
Lu 28800 276.4 4.1
Ne 20400 134.0 2.2
Po 15000 76.0 2.7
UK 22600 116.2 3.6

Then the following command will read the data file into the data frame EU2008:

EU2008 <- read.table(“EU2008.txt”)

The alternative way (for Windows users) is to simply copy the file and then read
it from the file called “clipboard”. The copying can be done in the text file or in
an Excel file (by painting out the data file and then using either the pull-down
Edit menu, or Ctrl-C, or right-clicking on the mouse and selecting Copy), for ex-
ample:

and then read the file from the clipboard using

EU2008 <- read.table(“clipboard”)

Notice that the function read.table successfully reads the table because of the
blank cell in the upper left corner of the spreadsheet, which effectively signals to

BIPLOTS IN PRACTICE

168

the function that the first row contains the columns labels and the first column
the row labels. Once the data file has been read, computations and graphical dis-
plays can commence.

The following commands reproduce Exhibit 1.2:

windows(width=11, height=6)
par(mfrow=c(1,2), cex.axis=0.7)
plot(EU2008[,2:1], type=”n”, xlab=”GDP/capita”,
+ ylab=”Purchasing power/capita”)
text(EU2008[,2:1], labels=rownames(EU2008), col=”green”, font=2)
plot(EU2008[,2:3], type=”n”, xlab=”GDP/capita”,
+ ylab=”Inflation rate”)
text(EU2008[,2:3], labels=rownames(EU2008), col=”green”, font=2)

The first command above sets the window size in inches—by default it would be
7 inches square—and the second command sets the plot layout with two plots side
by side, and axis scale labelling in a font size 0.7 times the default. These settings
remain in this window until it is closed.

Three-dimensional plotting is possible using the R package rgl, which should be
downloaded separately—for example, using the pull-down menu in R, select Pack-
ages and Install packages, then choose a mirror site and finally choose “rgl” from
the long alphabetical list of available packages. The three-dimensional display on
which Exhibit 1.3 is based can then be obtained as follows:

library(rgl)
plot3d(EU2008[,c(2,1,3)], xlab=”GDP”, ylab=”Purchasing power”,
+ zlab=”Inflation”, font=2, col=”brown”,
+ type=”n”)
text3d(EU2008[,c(2,1,3)], text=rownames(EU2008), font=2,
+ col=”green”)

The data set “bioenv” is assumed to have been read into the data frame bioenv,
with 8 columns: the species a to e, and the three continuous variables pollution,
depth and temperature. To calculate the linear regression of species d on pollution
and depth:

d <- bioenv[,4]
y <- bioenv[,6]
x <- bioenv[,7]
summary(lm(d~y+x))

Chapter 1:
Biplots—the Basic Idea

Chapter 2:
Regression Biplots

COMPUTATION OF BIPLOTS

169

(...)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.13518 6.25721 0.980 0.33554
y -1.38766 0.48745 -2.847 0.00834 **
x 0.14822 0.06684 2.217 0.03520 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.162 on 27 degrees of freedom
Multiple R-squared: 0.4416, Adjusted R-squared: 0.4003
F-statistic: 10.68 on 2 and 27 DF, p-value: 0.0003831

There are two ways to calculate the standardized regression coefficients: first by
standardizing all the variables and repeating the regression:

ds <- (d-mean(d))/sd(d)
ys <- (y-mean(y))/sd(y)
xs <- (x-mean(x))/sd(x)
summary(lm(ds~ys+xs))

(...)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.487e-17 1.414e-01 1.76e-16 1.00000
ys -4.457e-01 1.566e-01 -2.847 0.00834 **
xs 3.472e-01 1.566e-01 2.217 0.03520 *

Residual standard error: 0.7744 on 27 degrees of freedom
Multiple R-squared: 0.4416, Adjusted R-squared: 0.4003
F-statistic: 10.68 on 2 and 27 DF, p-value: 0.0003831

or by direct calculation using the unstandardized coefficients and the standard
deviations of the variables:

lm(d~y+x)$coefficients[2]*sd(y)/sd(d)
y

-0.4457286

lm(d~y+x)$coefficients[3]*sd(x)/sd(d)
x

0.3471993

The standardized regression coefficients for all five variables can be calculated in
a loop and stored in a matrix B, as in (2.2):

BIPLOTS IN PRACTICE

170

B <- lm(bioenv[,1]~y+x)$coefficients[2:3]*c(sd(y),
+ sd(x))/sd(bioenv[,1])
for(j in 2:5) B <- cbind(B,lm(bioenv[,j]~ y+x)$coefficients[2:3]
+ *c(sd(y),sd(x))/sd(bioenv[j]))

B

y x
B -0.7171713 0.02465266

-0.4986038 0.22885450
0.4910580 0.07424574

-0.4457286 0.34719935
-0.4750841 -0.39952072

A regression biplot similar to the one in Exhibit 2.5 can be drawn as follows:8

plot(xs, ys, xlab=”x*(depth)”, ylab=”y*(pollution)”, type=”n”,
+ asp=1, cex.axis=0.7)
text(xs, ys, labels=rownames(bioenv))
text(B[,2:1], labels=colnames(bioenv[,1:5]), col=”red”, font=4)
arrows(0,0,0.95*B[,2],0.95*B[,1], col=”red”, angle=15,
+ length=0.1)

So far, in the plotting instructions, several graphical parameters have appeared to
enhance the final figure, for example:

• col: sets the colour of a label or a line different from the default black, e.g.
col="red".

• cex: changes the font size of the label, e.g. cex=0.8 scales the label to 80%
of its default size.

• cex.axis: changes the font size of the scale on the axes.
• font: changes the font style, e.g. font=4 is bold italic.

These options, and many more, are listed and explained as part of the par func-
tion in R—for help on this function, enter the command:

?par

To avoid repetition and commands that are full of these aesthetic enhancements
of the plots, they will generally be omitted in this computational appendix from

COMPUTATION OF BIPLOTS

171

8. Notice that any slight formatting change or improvement in Exhibit 2.5 compared to the R output, for
example, the font sizes or positions of axis labels, has been done external to R to produce the final figure.

now on; but they nevertheless appear in the online script file. In addition, axis la-
belling will be generally omitted as well—this can be suppressed by including in
the plot function the options xlab="", ylab="", otherwise the default is to la-
bel the axes with the names of the variables being plotted.

The species d is nonlinearly transformed by the fourth-root, and then regressed
on standardized pollution and depth:

d0 <- d^0.25
summary(lm(d0~ys+xs))

(...)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.63908 0.09686 16.923 6.71e-16 ***
ys -0.28810 0.10726 -2.686 0.0122 *
xs 0.05959 0.10726 0.556 0.5831

Residual standard error: 0.5305 on 27 degrees of freedom
Multiple R-squared: 0.2765, Adjusted R-squared: 0.2229
F-statistic: 5.159 on 2 and 27 DF, p-value: 0.01266

Additional scripts are given in the online R script file for saving the coefficients
for all the regressions (Exhibits 3.1, 3.4, 3.5). We give further examples just for
species d:

Fitting a Poisson regression model for species d:

summary(glm(d~ys+xs, family=poisson))

(...)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.29617 0.06068 37.838 < 2e-16 ***
ys -0.33682 0.07357 -4.578 4.69e-06 ***
xs 0.19963 0.06278 3.180 0.00147 **

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 144.450 on 29 degrees of freedom
Residual deviance: 88.671 on 27 degrees of freedom
AIC: 208.55

To get the “error” deviance for this Poisson regression:

Chapter 3:
Generalized Linear Model

Biplots

BIPLOTS IN PRACTICE

172

poisson.glm <- glm(d~ys+xs, family=poisson)
poisson.glm$deviance/poisson.glm$null.deviance
[1] 0.6138564

Fitting a logistic regression model, for example for species d, after converting its
values to presence/absence (1/0):

d01 <- d>0
summary(glm(d01~ys+xs, family=binomial))

(...)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.7124 0.8533 3.179 0.00148 **
ys -1.1773 0.6522 -1.805 0.07105 *
xs -0.1369 0.7097 -0.193 0.84708

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 19.505 on 29 degrees of freedom
Residual deviance: 15.563 on 27 degrees of freedom
AIC: 21.563

To get the “error” deviance for this logistic regression:

logistic.glm <- glm(d01~ys+xs, family=binomial)
logistic.glm$deviance/logistic.glm$null.deviance
[1] 0.7979165

The data set “countries” (Exhibit 4.1) is assumed to have been read into the data
frame MT_matrix—this is the 13 × 13 dissimilarity matrix between 13 countries
given by student “MT”. The R function cmdscale performs classical multidi-
mensional scaling. Exhibit 4.2 is obtained as follows (notice the option asp=1
which sets the aspect ratio equal to 1 so that the scales have identical unit inter-
vals horizontally and vertically):

plot(cmdscale(MT_matrix), type=”n”, asp=1)
text(cmdscale(MT_matrix), labels=colnames(MT_matrix))

The data set “attributes” (first six columns of Exhibit 4.3) is assumed to have been
read into the data frame MT_ratings, with 13 rows and 6 columns. To add the
regression coefficients of each attribute to Exhibit 4.2 to eventually obtain Exhibit
4.5, first store the coordinates of the countries (rightmost pair of columns in Ex-
hibit 4.3) in MT_dims:

Chapter 4:
Multidimensional Scaling
Biplots

COMPUTATION OF BIPLOTS

173

MT_dims <- cmdscale(MT_matrix, eig=T, k=2)$points
colnames(MT_dims) <- c(“dim1”,”dim2”)

then calculate the regression coefficients and strore them in MT_coefs (Exhibit 4.4)

MT_coefs <- lm(MT_ratings[,1]~MT_dims[,1]+MT_dims[,2])
+ $coefficients
for(j in 2:ncol(MT_ratings)) MT_coefs<-rbind(MT_coefs,
+ lm(MT_ratings[,j]~MT_dims[,1]+MT_dims[,2])$coefficients)

Finally, plot the regression coefficients on the MDS plot (Exhibit 4.5)

plot(cmdscale(MT_matrix), type=”n”, asp=1)
text(cmdscale(MT_matrix), labels=colnames(MT_matrix))
arrows(0,0,MT_coefs[,2], MT_coefs[,3], length=0.1, angle=10)
text(1.2*MT_coefs[,2:3], labels=colnames(MT_ratings))

As an example of the definition of a function, the following is a function called
chidist to compute the chi-square distances between the rows or columns of a
supplied rectangular matrix.

chidist <- function(mat,rowcol=1) {
if(rowcol= =1) {

prof <- mat/apply(mat,1,sum)
rootaveprof <- sqrt(apply(mat,2,sum)/sum(mat))
}

if(rowcol= =2) {
prof <- t(mat)/apply(mat,2,sum)
rootaveprof <- sqrt(apply(mat,1,sum)/sum(mat))
}
dist(scale(prof,FALSE,rootaveprof))

}

So chidist(N,1) calculates chi-square distances between row profiles (this is
the default, so for row profiles, chidist(N) is sufficient), chidist(N,2) calcu-
lates chi-square distances between column profiles. The following code performs
and saves the MDS (there are four dimensions in this problem—this is explained
in Chapter 8 on correspondence analysis), and prints the percentages of variance
explained on each dimension:

abcde <- bioenv[,1:5]
abcde_mds <- cmdscale(chidist(abcde), eig=T, k=4)
100*abcde_mds$eig/sum(abcde_mds$eig)

BIPLOTS IN PRACTICE

174

Then the site points are plotted, as in Exhibit 4.6—notice the extra parameters in
the plot function for setting limits on the plot, anticipating additional points to
be added to the plot, and also notice that if a matrix argument is given to the
functions plot and text, then by default the first two columns are used:

plot(abcde.mds$points, type=”n”, asp=1, xlim=c(-1.2,1.6),
+ ylim=c(-1.1,1.8))
text(abcde.mds$points)

In this case, to add the species points, the species data are first converted to pro-
files, standardized by dividing them by the square roots of their marginal (“ex-
pected”) values, as is the case when calculating chi-square distances:

abcde_prof <- abcde/apply(abcde,1,sum)
abcde_prof_stand <- t(t(abcde_prof)/sqrt(apply(abcde,2,sum)/
+ sum(abcde)))

The regressions are then performed on the dimensions, the coefficients saved
and then added as arrows to the map plotted above:

mds_coefs <- lm(abcde_prof_stand[,1]~
+ abcde.mds$points[,1]+abcde.mds$points[,2])$coefficients
for(j in 2:5) mds_coefs<-rbind(mds_coefs,
+ lm(abcde_prof_stand[,j]~
+ abcde.mds$points[,1]+abcde.mds$points[,2])$coefficients)
arrows(0,0,mds_coefs[,2],mds_coefs[,3], length=0.1, angle=10)
text(1.1*mds_coefs[,2:3], labels=colnames(abcde))

Assuming the sediment variable has been read (in character form) into the vec-
tor sediment, convert it to a factor.

sediment <- as.factor(sediment)

Plot positions of sediment categories in two different ways. The first way is to av-
erage the positions of the site points for each category, to show average clay, grav-
el and sand site:

sediment.means <- cbind(tapply(abcde.mds$points[,1],
+ sediment, mean),tapply(abcde.mds$points[,2], sediment, mean))
text(sediment.means, labels=c(“C”,”G”,”S”))

The second way is to think of them as dummy variables to be predicted by the bi-
plot dimensions, for example by logistic regression as in Chapter 3. They are first

COMPUTATION OF BIPLOTS

175

converted to zero/one dummies and then their logistic coefficients are used to
plot them as biplot axes:

clay01 <- sediment==”C”
gravel01 <- sediment==”G”
sand01 <- sediment==”S”

sediment_coefs <-

+ glm(as.numeric(clay01)~abcde.mds$points[,1]+
+ abcde.mds$points[,2],family=”binomial”)$coefficients
sediment_coefs <- rbind(sediment_coefs,
+ glm(as.numeric(gravel01)~abcde.mds$points[,1]+
+ abcde.mds$points[,2], family=”binomial”)$coefficients)
sediment_coefs <- rbind(sediment_coefs,
+ glm(as.numeric(sand01)~abcde.mds$points[,1]+
+ abcde.mds$points[,2], family=”binomial”)$coefficients)
segments(0, 0, sediment_coefs[,2], sediment_coefs[,3])
text(sediment_coefs[,2:3], labels=c(“C”,”G”,”S”))

This is the code to produce the biplot of the 5 × 4 matrix of rank 2 which was
used as an introductory example in Chapter 1 and which is plotted here using
the SVD:

Y <- matrix(c(8,5,-2,2,4,2,0,-3,3,6,2,3,3,-3,-6,-6,-4,1,-1,-2),
+ nrow=5)
colnames(Y) <- c(“A”,”B”,”C”,”D”)
rowcoord <- svd(Y)$u %*% diag(sqrt(svd(Y)$d))
colcoord <- svd(Y)$v %*% diag(sqrt(svd(Y)$d))
plot(rbind(rowcoord,colcoord), type=”n”, asp=1)
abline(h=0, v=0, lty=”dotted”)
text(rowcoord, labels=1:5)
text(colcoord, labels=colnames(Y))

The “attributes” data set in the data frame MT_ratings is centred—notice the
sweep function to subtract the column means from each column:

MT_means <- apply(MT_ratings,2,mean)
MT_Y <- sweep(MT_ratings, 2, MT_means)

The equal row and column weights are applied and the singular value decompo-
sition (SVD) calculated:

MT_Y <- MT_Y/sqrt(nrow(MT_Y)*ncol(MT_Y))
MT_SVD <- svd(MT_Y)

Chapter 5:
Reduced-dimension

Biplots

Chapter 6:
Principal Component

Analysis Biplots

BIPLOTS IN PRACTICE

176

The form biplot (Exhibit 6.1), showing the rows in principal coordinates and the
columns in standard coordinates, is computed and plotted as follows:

MT_F <- sqrt(nrow(MT_Y))*MT_SVD$u%*%diag(MT_SVD$d)
MT_G <- sqrt(ncol(MT_Y))*MT_SVD$v
plot(rbind(MT_F,MT_G), type=”n”, asp=1, xlim=c(-3.6,2.3))
text(MT_F, labels=rownames(MT_ratings))
arrows(0, 0, MT_G[,1], MT_G[,2], length=0.1, angle=10)
text(c(1.07,1.3,1.07,1.35,1.2,1.4)*MT_G[,1],
+ c(1.07,1.07,1.05,1,1.16,1.1)*MT_G[,2],
+ labels=colnames(MT_ratings))

Notice two aspects of the above code: first, the plot command again contains
an explicit xlim option to extend the horizontal axis limits slightly, to accom-
modate the labels of the extreme points Germany and Morocco; and second, in
the text command there are explicit scaling factors—obtained by trial and er-
ror—to position the attribute labels in the plot so that they do not overlap (this
is generally done externally to R, by hand, to clean up the final version of the
figure).

The covariance biplot (Exhibit 6.2), showing the rows in standard coordinates
and the columns in principal coordinates, is similarly computed and plotted as
follows:

MT_F <- sqrt(nrow(MT_Y))*MT_SVD$u
MT_G <- sqrt(ncol(MT_Y))*MT_SVD$v%*%diag(MT_SVD$d)
plot(rbind(MT_F,MT_G), type=”n”, asp=1, xlim=c(-3.6, 2.3))
text(MT_F, labels=rownames(MT_ratings))
arrows(0, 0, MT_G[,1], MT_G[,2], length=0.1, angle=10)
text(c(1.07,1.20,1.07,1.25,1.07,1.3)*MT_G[,1],
+ c(1.07,1.07,1.04,1.02,1.16,1.07)*MT_G[,2],
+ labels=colnames(MT_ratings))

The basic graphical part of the scree plot of Exhibit 6.3 is drawn as follows:

MT_percents<-100*MT_SVD$d^2/sum(MT_SVD$d^2)
MT_percents<-MT_percents[seq(6,1)]
barplot(MT_percents, horiz=T, cex.axis=0.7)

The data set “USArrests” is in the R base package so is obtained simply with the
data command:

data(USArrests)

Chapter 7:
Log-ratio Biplots

COMPUTATION OF BIPLOTS

177

Columns 1, 2 and 4 of the data frame will be used. The weighted log-ratio biplot,
(7.1) to (7.4) is performed as follows, where rm and cm are the row and column
margins r and c, and mr and mc are weighted means used in the double-centring:

N <- USArrests[,c(1,2,4)]
P <- N/sum(N)
rm <- apply(P, 1, sum)
cm <- apply(P, 2, sum)
Y <- as.matrix(log(P))
mc <- t(Y) %*% as.vector(rm)
Y <- Y - rep(1,nrow(P)) %*% t(mc)
mr <- Y %*% as.vector(cm)
Y <- Y - mr %*% t(rep(1,ncol(P)))
Z <- diag(sqrt(rm)) %*% Y %*% diag(sqrt(cm))
svdZ <- svd(Z)

The biplot of the row principal and column standard coordinates (Exhibit 7.1) is
obtained as follows, where the column coordinates are scaled down by 20 to make
the plot more legible. As a consequence there are two scales on the plot, indicat-
ed on the left and at the bottom for the row points, and at the top and on the
right for the column points—in this case we show how the two sets of scales can
be colour coded to agree with their respective points:

compute form biplot coordinates from results of SVD
USA_F <- diag(1/sqrt(rm)) %*% svdZ$u[,1:2] %*% diag(svdZ$d[1:2])
USA_G <- diag(1/sqrt(cm)) %*% svdZ$v[,1:2]
biplot – axes with different scales plotted individually
plot(rbind(USA_F, USA_G/20), xlim=c(-0.35,0.45),
+ ylim=c(-0.18,0.23), asp=1, type = “n“, xaxt=”n”, yaxt=”n”)
axis(1, col.axis=”green”, col.ticks=”green”)
axis(2, col.axis=”green”, col.ticks=”green”, at=seq(-0.2,0.2,0.2))
axis(3, col.axis=”brown”, col.ticks=”brown”, at=seq(-0.4,0.4,0.2),
+ labels=seq(-8,8,4))
axis(4, col.axis=”brown”, col.ticks=”brown”, at=seq(-0.2,0.2,0.2),
+ labels=seq(-4,4,4))
text(USA_F, labels = rownames(N), col = “green”)
text(USA_G/20, labels = colnames(N), col = “brown”)

The total variance of the data can be calculated either as the sum of squares of
the elements of the decomposed matrix (Z in the above code) or as the sum of its
squared singular values:

sum(Z*Z)
[1] 0.01790182

BIPLOTS IN PRACTICE

178

sum(svdZ$d^2)
[1] 0.01790182

The fish morphology example goes through in a similar way, assuming that the
data frame fish contains the data, with the first two columns being the sex and
habitat (see the description later of this analysis in the computations for Chapter
11). The remaining columns are the morphometric data, stored in fish.morph.

fish.morph <- fish[,3:ncol(fish)]

The only difference in the plotting in Exhibit 7.3 compared to the previous exam-
ple is that the column standard coordinates are divided by 50, not 20, since these
data have even less variance—the sum of squares of the corresponding Z matrix is:

sum(Z*Z)
[1] 0.001960883

Then, instead of fish identity codes, their sex × habitat are used as labels, stored
in fish.labels—the first statement below computes numerical codes for the
four sex × habitat groups:

fish.sexhab <- 2*(fish[,2]-1)+fish[,1]
fish.labels <- rep(“fL”, nrow(fish))
fish.labels[fish.sexhab==”2”] <- ”mL”
fish.labels[fish.sexhab==”3”] <- ”fP”
fish.labels[fish.sexhab==”4”] <- ”mP”

The plot of the two log-ratios in Exhibit 7.4 is obtained as follows (notice how vari-
ables can be picked out of the data.frame fish.morph by name):

logFdlFal <- log(fish.morph[,”Fdl”] / fish.morph[,”Fal”])
logFdwFal <- log(fish.morph[,”Fdw”] / fish.morph[,”Fal”])
plot(logFdlFal,logFdwFal, asp=1, pch=24, xlab=”log(Fdl/Fal)”,
+ ylab=”log(Fdw/Fal)”)
abline(a=0.0107, b=0.707, lty=2)

The predicted values of variable Fdw (dorsal fin width) are computed and then
compared graphically to their actual values as follows:

Fdw_pred <-
+ 1.0108 * fish.morph[,”Fdl”]^0.707 * fish.morph[,”Fal”]^0.293
plot(Fdw_pred, fish.morph[,”Fdw”], xlim=c(18,30), ylim=c(18,30),
+ pch=24, xlab=”predicted Fdw”, ylab=”actual Fdw”)

COMPUTATION OF BIPLOTS

179

abline(a=0, b=1, lty=2, col=”brown”)
correlation between predicted and observed
cor(Fdw_pred, fish.morph[,”Fdw”])
[1] 0.7496034

For the calculations of CA, and later MCA, we shall tend to use the package ca in
R. This has to be installed from the CRAN package library first, and then loaded
into an R session:

library(ca)

The “smoking” data set is included in the ca package:

data(smoke)

The commands for performing CA from first principles, as described in (8.1) and
(8.2), are:

N <- smoke
P <- N/sum(N)
rm <- apply(P, 1, sum)
cm <- apply(P, 2, sum)
Dr <- diag(rm)
Dc <- diag(cm)
Z <- diag(sqrt(1/rm))%*%(as.matrix(P)-rm%*%t(cm))
+ %*%diag(sqrt(1/cm))
svdZ <- svd(Z)

For the asymmetric map of Exhibit 8.1 the row principal and column standard co-
ordinates are:

smoke_F <- diag(1/sqrt(rm))%*%svdZ$u %*%diag(svdZ$d)
smoke_G <- diag(1/sqrt(cm))%*%svdZ$v

and can be plotted in the usual way.

However, using the ca package Exhibit 8.2 can be obtained in just one instruction:

plot(ca(smoke),map=”rowprincipal”, col=c(“green”,”brown”))

The plot function here is actually the plot.ca function, automatically recog-
nizing the ca object, and the col option now defines the colours of the row and
column symbols.

Chapter 8:
Correspondence Analysis

Biplots

BIPLOTS IN PRACTICE

180

The numerical results, including the contributions to inertia, are listed using the
summary function:9

summary(ca(smoke))

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.074759 87.8 87.8 *************************
2 0.010017 11.8 99.5 ***
3 0.000414 0.5 100.0

-------- -----
Total: 0.085190 100.0

Rows:
name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | SM | 57 893 31 | -66 92 3 | -194 800 214 |
2 | JM | 93 991 139 | 259 526 84 | -243 465 551 |
3 | SE | 264 1000 450 | -381 999 512 | -11 1 3 |
4 | JE | 456 1000 308 | 233 942 331 | 58 58 152 |
5 | SC | 130 999 71 | -201 865 70 | 79 133 81 |

Columns:
name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | non | 316 1000 577 | -393 994 654 | -30 6 29 |
2 | lgh | 233 984 83 | 99 327 31 | 141 657 463 |
3 | mdm | 321 983 148 | 196 982 166 | 7 1 2 |
4 | hvy | 130 995 192 | 294 684 150 | -198 310 506 |

Suppose that the “benthos” data set has been read into the data frame benthos.
First perform the CA and calculate the row contributions to the two-dimensional
biplot (note that the standard coordinates are stored in the ca object).

benthos.ca <- ca(benthos)
benthos.F <- benthos.ca$rowcoord %*% diag(benthos.ca$sv)
benthos.rowcon <- benthos.ca$rowmass * (benthos.F[,1]^2 +
+ benthos.F[,2]^2) / sum(benthos.ca$sv[1:2]^2)

Then set up a vector of species labels where those with contributions less than 1%
are labelled “·”.

COMPUTATION OF BIPLOTS

181

9. See the paper online about the ca function, given in the bibliography, which describes the ca output.

benthos.names <- rownames(benthos)
benthos.names[benthos.rowcon<0.01] <- “·”

A nonlinear transformation is performed on the contributions above 1%, to be
used for the character size of the labels.

benthos.rowsize <- log(1+exp(1)*benthos.rowcon^0.3)
benthos.rowsize[benthos.rowcon<0.01] <- 1

Exhibit 8.3 is plotted, with rows (species) in standard coordinates and columns
(sites) in principal coordinates, with varying label sizes for the species.

FF <- benthos.ca$rowcoord
GG <- benthos.ca$colcoord %*% diag(benthos.ca$sv)
plot(rbind(FF,GG), type = “n”, xlab “”, ylab = ““, asp=1)
text(FF[,1:2], labels = benthos.names, cex=benthos.rowsize)
text(GG[,1:2], labels = colnames(benthos))

The biplot showing point contributions is available in the ca package, using map
option “rowgreen“ or “colgreen“ depending on which set is required in prin-
cipal coordinates (in our case it would be the sites, or columns). The species labels
are first substituted with those where the low contributing ones are replaced by “·”.

benthos.ca$rownames <- benthos.names

Because rows are species (variables) and columns are sites (samples) the symbols
need to be reversed—see help(plot.ca) in R for information about the plot
option pch and execute the command pchlist() to get a list of plotting sym-
bols (an alternative would be to transpose the data matrix from the start). For this
biplot we also use the plot option mass to get symbols with sizes related to the
species masses. The contribution biplot of Exhibit 8.4 is obtained using plot op-
tion map=”colgreen”, which plots the columns in principal coordinates, as be-
fore, but the species (rows) in their contribution positions:

plot(benthos.ca, map=”colgreen”, mass=c(1,0), pch=c(17,24,16,1))

Lines are added connecting the origin with the species points, showing how their
positions are computed as standard coordinates multiplied by the square roots of
the species masses:

for(j in 1:nrow(benthos)) lines(
+ c(0,benthos.ca$rowcoord[j,1]*sqrt(benthos.ca$rowmass[j])),
+ c(0,benthos.ca$rowcoord[j,2]*sqrt(benthos.ca$rowmass[j])))

BIPLOTS IN PRACTICE

182

Alternatively, the segments function can be used, which automatically recycles
the coordinates 0 and 0 in the following command:

segments(0, 0, benthos.ca$rowcoord[,1]*sqrt(benthos.ca$rowmass),
+ benthos.ca$rowcoord[,2]*sqrt(benthos.ca$rowmass))

The original data set “women” consists of the 2471 Spanish respondents in the
2002 ISSP survey on Family and Changing Gender Roles III, including their re-
sponses to the 8 substantive and 4 demographic variables listed in Chapter 9. In
the supporting website it is shown how the concatenated matrix can be extracted
from the original data. The simplest way is using a concept from Chapter 10
called the Burt matrix, and the most complicated is by converting all question re-
sponses first into zero—one dummy variables—both of these are explained in the
next section on Chapter 10 . For the moment we assume that this matrix (part of
which is shown in Exhibit 9.1), called women.concat, has already been comput-
ed, or input directly from an external source (the concatenated matrix itself is
also provided on the website). The two categories H4 and H5 have also been com-
bined into a category, labelled H4,5, so the matrix has 23 rows and 39 columns.

The symmetric CA of the concatenated matrix can be obtained using the default
plot option in the ca package:

plot(ca(women.concat))

Depending on the version of the ca package (or any other software for corre-
spondence analysis), an inversion of the axes might be obtained. The following
code shows how the sign of the second axis is reversed, once the correspondence
analysis object is saved:

women.ca <- ca(women.concat)
women.ca$rowcoord[,2] <- -women.ca$rowcoord[,2]
women.ca$colcoord[,2] <- -women.ca$colcoord[,2]
plot(women.ca)

Exhibit 9.2 was obtained by plotting the symbols first, and then adding the two
sets of labels in different styles, also adding the inertias and their percentages on
the axes:

plot(women.ca, labels=0)
women.F <- women.ca$rowcoord %*% diag(women.ca$sv)
women.G <- women.ca$colcoord %*% diag(women.ca$sv)
text(women.F, labels=women.ca$rownames, pos=4, offset=0.3)
text(women.G, labels=women.ca$colnames, pos=4, offset=0.3)

Chapter 9:
Multiple Correspondence
Analysis Biplots I

COMPUTATION OF BIPLOTS

183

text(max(women.G[,1]), 0, “0.0571 (82.1%)”, adj=c(0.6,-0.6))
text(0, max(women.G[,2]), “0.0030 (4.4%)”, adj=c(-0.1,-3))

The map is plotted in a square window, which should then be pulled into the flat-
ter shape of Exhibit 9.2 (the aspect ratio is not affected by this action). Having
pulled the window into the desired shape, repeat the plotting so that the labels
are properly positioned. Then the only difference between this result and Ex-
hibit 9.2 is an adjustment of some of the overlapping labels, performed exter-
nally to R.

Exhibit 9.3 is plotted in a similar way, but using the plot option map="rowprin-
cipal"

plot(women.ca, map=”rowprincipal”, labels=c(0,2))

Similarly, the contribution biplot in Exhibit 9.6, where the the standard coordi-
nates are shrunk by the square roots of the category masses, is obtained with the
plot option map="rowgreen" (here the mass option is also illustrated, to make
the size of the column category symbols be related to their masses:

plot(women.ca, map=”rowgreen”, mass=c(F,T))

To add the supplementary points for sex (m = male, f = female) and age (a1
to a6):

women.sex <- c(rep(“m”,6),rep(“f”,6))
women.age <- rep(c(“a1”,”a2”,”a3”,”a4”,”a5”,”a6”),2)
women.sex.F <- cbind(tapply(women.F[12:23,1],women.sex,mean),
+ tapply(women.F[12:23,2],women.sex,mean))
women.age.F <- cbind(tapply(women.F[12:23,1],women.age,mean),
+ tapply(women.F[12:23,2],women.age,mean))
points(rbind(women.sex.F, women.age.F), pch=21)
text(rbind(women.sex.F, women.age.F),
+ labels=c(“f”,”m”,”a1”,”a2”,”a3”,”a4”,”a5”,”a6”),
+ pos=4, offset=0.3)

The Burt matrix is a by-product of the mjca function in the ca package. If women
contains the original response data, with the first 8 columns corresponding to
the eight substantive questions A to H, then the Burt matrix is obtained as fol-
lows:

women.Burt <- mjca(women[,1:8])$Burt

Chapter 10:
Multiple Correspondence

Analysis Biplots II

BIPLOTS IN PRACTICE

184

If the categories H4 and H5 have not already been combined, then this can be
done by combining the corresponding rows and columns of the Burt matrix:

women.Burt[,39] <- women.Burt[,39]+women.Burt[,40]
women.Burt[39,] <- women.Burt[39,]+women.Burt[40,]
women.Burt <- women.Burt[-40,-40]
rownames(women.Burt)[39] <- colnames(women.Burt)[39] <- “H4,5”

An alternative way to compute the Burt matrix, assuming that the “women” data
set has been read as dummy variables into the data frame women.Z containing
the indicator matrix of dummy variables for the 8 questions A to H (40 dummies
if H5 included, otherwise 39 if H4 and H5 have been combined). Then, as given
in (10.2), the Burt matrix can be computed by premultiplying the indicator ma-
trix by its transpose (notice the as.matrix commands if women.Z is a data
frame, necessary for the multiplication):

women.Burt<- t(as.matrix(women.Z))%*%as.matrix(women.Z)

In the same way, the concatenated matrix women.concat can be obtained from
the Burt matrix of all the variables, including the demographics, or via the in-
dicator matrices. Suppose that womenS.Z contains the 2107 × 31 indicator matrix
of dummy variables for the demographic variables (2 for sex, 5 for marital sta-
tus, 6 for education, 6 for age, 12 sex-age combinations), then women.concat
can be computed by premultiplying women.Z by the indicator matrix of dummy
variables corresponding to sex, marital status, education and the sex-age combi-
nations:

women.concat<- t(as.matrix(womenS.Z[,c(3:13,20:31)])) %*%
+ as.matrix(women.Z)

Alternatively, select just that part of the Burt matrix of all the variables, including
the demographics, corresponding to the concatenated matrix:

women.concat <- mjca(women)$Burt[c(3:13,20:31),]

To obtain the total inertia of the Burt matrix, sum the squares of its singular val-
ues in the CA:

sum(ca(women.Burt)$sv^2)
[1] 0.677625

Then use (10.1) to calculate the adjusted total inertia:

COMPUTATION OF BIPLOTS

185

(8/7)*(sum(ca(women.Burt)$sv^2)-(31/64))
[1] 0.2208571

Total inertia of the indicator matrix, calculated from the CA (from theory we
know it will be equal to (39 – 8)/8 = 3.875:

sum(ca(women.Z)$sv^2)
[1] 3.875

Exhibit 10.3 can be obtained as follows (notice the change in the point symbols
using the pch option, to get a smaller dot symbol for the cases, and the mass op-
tion to get triangle symbols related to the relative frequency of the category):

plot(ca(women.Z), map=”rowprincipal”, labels=c(0,2),
+ pch=c(149,1,17,24), mass=c(FALSE,TRUE))

To see how many of the singular values (i.e., square roots of principal inertias) in
the analysis of the Burt matrix are larger than 1/8:

which(ca(women.Burt)$sv>(1/8))
[1] 1 2 3 4 5 6 7 8 9

So we apply the adjustment of (10.4) to the first 9 singular values:

(8/7)*(ca(women.Burt)$sv[1:9]-(1/8))
[1] 0.34219 0.23260 0.12415 0.11500 0.03451 0.02575 0.01489
+ 0.00897 0.00681

To get parts of inertia explained on the axes, square these adjusted singular val-
ues and then express relative to the adjusted total inertia calculated previously:

(64/49)*(ca(women.Burt)$sv[1:9]-(1/8))^2/0.2208571
[1] 0.53017 0.24496 0.06979 0.05987 0.00539 0.00300 0.00100
+ 0.00036 0.00021

Notice that the above parts do not add up to 1, since these 9 MCA axes cannot
perfectly explain the total inertia in the off-diagonal tables: we would need to use
joint correspondence analysis (JCA) to achieve this. Exhibit 10.4 is obtained by
substituting the square roots of the adjusted inertias for the original ones in the
CA of the Burt matrix:

women.Burt.ca <- ca(women.Burt)
women.Burt.ca$sv <- diag((8/7)*(ca(women.Burt)$sv[1:9]-(1/8)))

BIPLOTS IN PRACTICE

186

The website http://www.multivariatestatistics.org gives the full sets of
instructions for plotting Exhibits 10.4 and 10.5. Exhibit 10.6 illustrates the compu-
tation of the contribution coordinates of the categories and including supple-
mentary points (again, notice that axes may be inverted compared to Exhibit 10.6):

women.BurtS.ca <- ca(rbind(women.Burt, women.concat),
+ suprow=40:62)
women.BurtS.Gctr <- sqrt(women.BurtS.ca$colmass) *
+ women.BurtS.ca$colcoord
women.BurtS.ca$colcoord <- women.BurtS.Gctr
women.BurtS.ca$sv[1:9] <- (8/7)*(women.BurtS.ca$sv[1:9]-(1/8))
plot(women.BurtS.ca, map=”rowprincipal”, what=c(“none”,”all”),
+ labels=0, pch=c(20,1,24,24))
text(women.BurtS.Gctr, labels=women.Burt.ca$colnames, pos=2)
women.BurtS.Fsup <- women.BurtS.ca$rowcoord[40:62,] %*%
+ diag(women.BurtS.ca$sv)
points(women.BurtS.Fsup, pch=21)
text(women.BurtS.Fsup, labels=women.BurtS.ca$rownames[40:62],
+ pos=2)

From the log-ratio biplot of the morphometric data of the “morphology” data set
in chapter 7 we know that the total variance is equal to 0.001961. We now want to
aggregate the data into the four sex × habitat groups and measure how much vari-
ance is lost. The original data should not be aggregated since we are working on
a logarithmic scale. It is equivalent, however, to aggregate the log-transformed
data, or aggregate the rows of the double-centred matrix of log-transformed val-
ues. We choose the second way as an illustration, first repeating the initial steps
of the log-ratio analysis algorithm (see computations for Chapter 7) on the ma-
trix fish.morph:

N <- fish.morph
P <- N/sum(N)
rm <- apply(P, 1, sum)
cm <- apply(P, 2, sum)
Y <- as.matrix(log(P))
mc <- t(Y) %*% as.vector(rm)
Y <- Y - rep(1,nrow(P)) %*% t(mc)
mr <- Y %*% as.vector(cm)
Y <- Y - mr %*% t(rep(1,ncol(P)))

The group masses are calculated:

fish.centroids.rm <- tapply(rm, fish[,3], sum)

Chapter 11:
Discriminant Analysis
Biplots

COMPUTATION OF BIPLOTS

187

and the four centroids, by weighted averaging of the corresponding rows of Y:

fish.centroids <- tapply(rm * Y[,1], fish[,3], sum)
for(j in 2:ncol(fish.morph)) fish.centroids
+ <- cbind(fish.centroids, tapply(rm * Y[,j], fish[,3], sum))
fish.centroids <- fish.centroids / fish.centroids.rm

Then the LRA algorithm continues for the four centroids, using the weighted
SVD:

Z <- diag(sqrt(fish.centroids.rm)) %*% fish.centroids %*%
+ diag(sqrt(cm))
svdZ <- svd(Z)
principal coordinates of centroids, standard coordinates of
+ variables
FF <- diag(1/sqrt(fish.centroids.rm)) %*% svdZ$u %*% diag(svdZ$d)
GG <- diag(1/sqrt(cm)) %*% svdZ$v

The inertia of the centroids:

inertia.centroids <- sum(Z*Z)
inertia.centroids
[1] 0.000128325

which is 6.5% of the total variance 0.001961 of the individual fish, computed in
Chapter 7.

The biplot of the centroids and variables Exhibit 11.2 has a scaling factor differ-
ence of 50 between the two sets of points, as in Exhibit 7.3.

CA-DA, which is a CA of a concatenated table where a set of variables is cross-tab-
ulated against a single grouping variable, is illustrated by Exhibit 11.3 for the
“women” data set, using the marital status categories in the first five lines of the
matrix women.concat (see Chapter 9). In this case we chose the contribution bi-
plot:

women.ca_da <- ca(women.concat[1;5,])
women.ca_da$rownames <- c(“married”, “widowed”, “divorced”,
+ “separated”, “single”)
plot(women.ca_da, map=”rowgreen”)

(again, as explained in the computations of Chapter 9, if the axes are reversed
compared to Exhibit 11.3, their coordinates can be multiplied by –1).

BIPLOTS IN PRACTICE

188

To see some basic results of the CA object: principal inertias, their percentages,
the row and column masses, chi-square distances to the centroid, inertias, stan-
dard coordinates, etc, just type the object name:

women.ca_da
Principal inertias (eigenvalues):

1 2 3 4
Value 0.029316 0.002915 0.002321 0.000993
Percentage 82.48% 8.2% 6.53% 2.79%

Rows:
married widowed divorced separated single

Mass 0.554817 0.081633 0.021357 0.032748 0.309445
ChiDist 0.080668 0.413108 0.320868 0.226113 0.213684
Inertia 0.003610 0.013931 0.002199 0.001674 0.014129
Dim. 1 0.403377 2.291677 -0.619362 -0.617888 -1.219648
Dim. 2 -0.656420 2.210670 -2.610218 -0.462015 0.822790

Columns:

etc. … More detailed results can be obtained using the summary function, as ex-
plained before.

The “iris” data set is available in R:

data(iris)

The first four columns contain the variables and the fifth column contains the clas-
sification into the three groups: “setosa“, “versicolor“ and “virginica“
(there are 50 in each group). Read the data into X and calculate the means in G:

X <- iris[,1:4]
n <-nrow(X)
p <-ncol(X)
G <- apply(X[iris[,5]==”setosa”,],2,mean)
G <- rbind(G,apply(X[iris[,5]==”versicolor”,],2,mean))
G <- rbind(G,apply(X[iris[,5]==”virginica”,],2,mean))
g <- nrow(G)
rownames(G) <- c(“setosa”, “versicolor”, “virginica”)
colnames(G) <- c(“SepL”,”SepW”,”PetL”,”PetW”)
colnames(X) <- c(“SepL”,”SepW”,”PetL”,”PetW”)

Calculate the three within-group covariance matrices (notice that we prefer the
definition where the sum of squares is divided by n and not n – 1, hence the slight
adjustment by (n – 1)/n = 49/50.

COMPUTATION OF BIPLOTS

189

C1 <- (49/50)*cov(X[iris[,5]==”setosa”,])
C2 <- (49/50)*cov(X[iris[,5]==”versicolor”,])
C3 <- (49/50)*cov(X[iris[,5]==”virginica”,])

The average within-grouped covariance matrix C is just the arithmetic average
since the groups are the same size (otherwise it should be the weighted average
—see (11.3)):

C <- (C1+C2+C3)/3

To calculate the inverse square root of C, calculate its SVD (or eigenvalue-eigen-
vector decomposition) and then use the inverse square roots of the singular values:

C.svd <- svd(C)
Cminushalf <- C.svd$u %*% diag(1/sqrt(C.svd$d)) %*% t(C.svd$v)

Calculate the matrix S of (11.4), its SVD and coordinates for the contribution bi-
plot:

oneg <- rep(1,g)
Ig <- diag(oneg)
S <- diag(rep(sqrt(1/g),g)) %*% (Ig - (1/g)* oneg %*% t(oneg))
+ %*% G %*% Sminushalf * sqrt(1/ncol(G))
S.svd <- svd(S)
S.rpc <- sqrt(g) * S.svd$u %*% diag(S.svd$d)
S.cbp <- S.svd$v

Calculate the coordinates of the individual n = 150 irises as supplementary points
according to (11.5):

onen <- rep(1,n)
In <- diag(onen)
S.rsup <- (In - (1/n)* onen %*% t(onen)) %*% as.matrix(X)
+ %*% Cminushalf %*% S.svd$v * sqrt(1/p)

Plot the groups and individual points in three colours:

plot(S.rsup, type = “n”, asp=1)
text(S.rsup, labels = “·”, col = c(rep(“green”,50),,
+ rep(“violet”,50) rep(“brown”,50)), cex=2, font = 2)
text(S.rpc, labels = rownames(G),
+ col = c(“green”,”violet”,”brown”), font = 2, adj=c(0.5,0.5))
text(S.cbp, labels = colnames(G), col = “brown”, cex=0.8, font = 2)
segments(0,0,S.cbp[,1],S.cbp[,2],col=”brown”)

BIPLOTS IN PRACTICE

190

Variance of the group means (i.e., between-group variance) is the sum of squares
of the elements of the S matrix:

sum(S*S)
[1] 8.11933

The total variance of the points is obtained by calculating the equivalent matrix
for the individuals in the Mahalanobis metric):

S <- sqrt(1/n) * (I - (1/n)* onen %*% t(onen)) %*% as.matrix(X)
+ %*% Cminushalf * sqrt(1/p)
sum(S*S)
[1] 9.11933

The difference between these two variance measures is exactly 1, which is the val-
ue of the within-group variance, by construction.

To test whether the between-group variance of 0.000128 in the above example of
the four fish groups is significant, a permutation test consists in randomly shuffling
the set of group labels assigned to the fish, recomputing the between-group vari-
ance each time (we reallocate the labels randomly 9,999 times) and seeing where
the actual figure (which serves as the 10,000th permutation) lies in the permutation
distribution. The following R code does the job, assuming that the same initial
steps of the LRA algorithm are performed (see the 9 commands at the start of the
computations for Chapter 11), ending with Y being the double-centred matrix of
log-transformed data. Notice that the commands in the loop are just a repeat of
the code previously used, but starting each iteration with a random sampling of the
group labels, using the sample function. The initial set.seed(317) operation
can be changed (or omitted) if you want a different set of random permutations.

set.seed(317)
inertia.perm <- rep(0,10000)
inertia.perm[1] <- inertia.centroids
for(iperm in 2:10000) {

fish.perm<-sample(fish[,3])
fish.centroids.rm <- tapply(rm, fish.perm, sum)
fish.centroids <- tapply(rm * Y[,1], fish.perm, sum)
for(j in 2:ncol(fish.morph)) fish.centroids

+ <- cbind(fish.centroids, tapply(rm * Y[,j], fish.perm, sum))
fish.centroids <- fish.centroids / as.numeric(fish.centroids.rm)
Z <- diag(sqrt(fish.centroids.rm)) %*% fish.centroids

+ %*% diag(sqrt(cm))
inertia.perm[iperm] <- sum(Z*Z)
}

A Permutation Test

COMPUTATION OF BIPLOTS

191

To see where the value of 0.000128 lies in the permutation distribution:

which(sort(inertia.perm)==inertia.perm[1])
[1] 9847

so the number of permutations in the tail, including our observed value, is 154,
which shows that it lies in the far upper tail of the distribution, with a p-value of
154/10,000 = 0.0154. A histogram of the permutation distribution, indicating the
position of the observed value is shown in Exhibit A.1.

For the analysis of the fish morphometric data, we first add the body weight of the
fish as a supplementary variable to the unconstrained log-ratio analysis. Again the
nine commands at the start of the computations in Chapter 11 are repeated, up
to the computation of the double-centred Y. Here we show the “column-princi-
pal” or “covariance” biplot, computing the SVD the usual way and then row stan-
dard and column principal coordinates:

Z <- diag(sqrt(rm)) %*% Y %*% diag(sqrt(cm))
svdZ <- svd(Z)

Exhibit A.1:
Histogram of permutation

distribution showing
observed test statistic. The
p-value is the relative area
of the distribution from the

test statistic to the right

Chapter 12:
Constrained Biplots

BIPLOTS IN PRACTICE

192

inertia.perm

Fr
eq

ue
nc

y

0.00000 0.00005 0.00010 0.00015

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

0.000128

FF <- diag(1/sqrt(rm)) %*% svdZ$u
GG <- diag(1/sqrt(cm)) %*% svdZ$v %*% diag(svdZ$d)

The body weight variable is standardized and regressed on the coordinates of the
fish on the two dimensions of the morphometric log-ratio analysis. Since the fish
are weighted according to their marginal totals, a weighted regression is per-
formed, using the row masses in rm . Suppose that the body weight variable has
been read into the vector fish.weight, then the R function cov.wt computes
weighted means and variances:

fish.weight.mean <- cov.wt(as.matrix(fish.weight),wt=rm)$center
fish.weight.var <- cov.wt(as.matrix(fish.weight),wt=rm)$cov
fish.weight.stand <- (fish.weight-fish.weight.mean)/
+ sqrt(fish.weight.var)
lm(fish.weight.stand~FF[,1]+FF[,2], weights=rm)$coefficients

(Intercept) FF[, 1] FF[, 2]
-5.764505e-15 1.162973e-01 2.025847e-01

The coefficients 0.116 and 0.203 would define an arrow in the LRA biplot but
only 5.5% of the variance of the body weight variable is explained, as can be seen
by executing the summary() of the regression model above:

summary(lm(fish.weight.stand~FF[,1]+FF[,2], weights=rm))

(...)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.765e-15 1.138e-01 -5.07e-14 1.0000
FF[, 1] 1.163e-01 1.138e-01 1.022 0.3101
FF[, 2] 2.026e-01 1.138e-01 1.781 0.0792

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1138 on 72 degrees of freedom
Multiple R-squared: 0.05531, Adjusted R-squared: 0.02907
F-statistic: 2.108 on 2 and 72 DF, p-value: 0.1290

To constrain the first axis to be perfectly correlated with body weight the defini-
tion of the projection matrix Q in (12.2) is particularly simple, because there is
only a scalar to invert, not a matrix:

Q <- diag(sqrt(rm)) %*% fish.weight.stand
+ %*% (1/((t(fish.weight.stand)%*%diag(rm)

COMPUTATION OF BIPLOTS

193

+ %*%fish.weight.stand))) %*% t(fish.weight.stand)
+ %*% diag(sqrt(rm))
QZ <- Q %*% Z
svdQZ <- svd(QZ)

The orthogonal projection and corresponding SVD is:

QpZ <- Z - QZ
svdQpZ <- svd(QpZ)

The coordinates of the points are obtained from the first axis of the constrained
analysis, and the first axis of the unconstrained one, and the body weight vector
is obtained by weighted linear regression as before:

FF[,1] <- diag(1/sqrt(rm)) %*% svdQZ$u[,1]
GG[,1] <- diag(1/sqrt(cm)) %*% svdQZ$v[,1] * svdQZ$d[1]
FF[,2] <- diag(1/sqrt(rm)) %*% svdQpZ$u[,1]
GG[,2] <- diag(1/sqrt(cm)) %*% svdQpZ$v[,1] * svdQpZ$d[1]
fish.weight.coefs <- lm(fish.weight.stand~FF[,1]+FF[,2],
+ weights=rm)$coefficients

After plotting the row and column points as before (again with two scales), body
weight can be indicated by an arrow, as shown in Exhibit 12.1, as follows:

arrows(0, 0, 0.9*fish.weight.coefs[1], 0.9*fish.weight.coefs[2],
+ lwd=1.5, length=0.10, angle=15)
text(fish.weight.coefs[1], fish.weight.coefs[2], “weight”)

The decomposition of the total variance into constrained and unconstrained
parts:

sum(Z*Z)
[1] 0.001960883
sum(QZ*QZ)
[1] 7.860202e-05
sum(QpZ*QpZ)
[1] 0.001882281
100*sum(QZ*QZ)/sum(Z*Z)
[1] 4.008501

To perform a permutation test on the percentage of variance of the morphome-
tric data explained by body weight, simply loop over the calculation of this per-
centage for random permutations of the body weight vector. The position of the

BIPLOTS IN PRACTICE

194

observed percentage of 4.01% in the sorted list of 10,000 permutations (9,999
plus the observed one) estimates the p-value:

set.seed(157)
bodyperm<-rep(0,10000)
total <- sum(Z*Z)
Q <- diag(sqrt(rm)) %*% fish.weight.stand %*%
+ (1/((t(fish.weight.stand) %*% diag(rm) %*% fish.weight.stand)))
+ %*% t(fish.weight.stand) %*% diag(sqrt(rm))
QZ <- Q %*% Z
bodyperm[1]<-100*sum(QZ*QZ)/total
start permutations
for(iperm in 2:10000){

fish.weight.stand.perm<-sample(fish.weight.stand)
Q <- diag(sqrt(rm)) %*% fish.weight.stand.perm
+ %*% (1/((t(fish.weight.stand.perm) %*% diag(rm)
+ %*% fish.weight.stand.perm))) %*% t(fish.weight.stand.perm)
+ %*% diag(sqrt(rm))
QZ <- Q %*% Z
bodyperm[iperm]<-100*sum(QZ*QZ)/total
}

find where the observed percentage is in the sorted list
which(sort(bodyperm)==bodyperm[1])
[1] 9991

The observed value is 10th from the top of the 10,000 values and the estimated
p-value is thus 10/10,000 = 0.001.

For the final CCA of the data set “benthos”, we illustrate the use of the function
cca in the vegan package in R (this package needs to be installed separately).
First read in the six environmental variables into the data frame benthos_env.
Notice that this data set has the sites in the rows whereas benthos has the sites in
the columns. For the cca function the sites need to be in the rows in both matri-
ces, hence the use of t(benthos) in the code below. After log-transforming the
environmental variables, the CCA is performed and the points and environmen-
tal variable arrows are plotted:

benthos_env <- log(benthos_env)
library(vegan)
benthos.cca <- cca(t(benthos), benthos_env)
plot(benthos.cca, display=c(“lc”,”bp”,”sp”), type=”n”)
text(benthos.cca, display=”bp”, labels=colnames(benthos_env))
text(benthos.cca, display=”sp”, labels=rownames(benthos))
text(benthos.cca, display=”lc”, labels=colnames(benthos))

COMPUTATION OF BIPLOTS

195

The plotting options chosen give the asymmetric biplot with sites in standard coor-
dinates and species in principal coordinates (i.e., at weighted averages of the site
points), and the environmental variables as biplot vectors using their regression co-
ordinates on the CCA axes—these biplot coordinates are identical to the (weighted)
correlation coefficients with the axes, since the site coordinates are standardized.

This plot is highly cluttered by all the species labels and so we can prune them
down to the set of species that is most contributing to the display, as we have
shown before in Chapter 8 for the same data set “benthos”. The following code
assigns “.” labels to all species with less than a 1% contribution to the triplot:

benthos.cca.sp <- benthos.ccaCCAv.eig
benthos.cca.spcon <- benthos.cca$colsum * (benthos.cca.sp[,1]^2 +
+ benthos.cca.sp[,2]^2) / sum(benthos.ccaCCAeig[1:2])
benthos.names <- rownames(benthos)
benthos.names[benthos.cca.spcon<0.01] <- “·”

Plotting is then repeated as before, but substituting benthos.names for the origi-
nal rownames(benthos) when species labels are plotted:

text(benthos.cca, display=”sp”, labels=benthos.names)

Further R scripts for the three case studies in Chapters 13 to 15 are given in the
supporting website.

The objective of this computational appendix is to educate readers in the use of
R to construct biplots. Seeing and understanding the commands associated with
specific figures in this book will assist users to perform their own analyses and bi-
plots in the same way, as well as make them more proficient in R. Apart from
these scripts, there are additional functions and one software package available
for biplots.

The R functions princomp and prcomp for principal component analysis (PCA)
both have a plotting function biplot. For example, biplot(princomp(X))
draws the biplot of the PCA of the data matrix X. There are always two scales on
the axes, one for the rows and one for the columns (similar to Exhibits 11.2, 12.1
and 12.5, for example). The biplot function (which is actually biplot.prin-
comp or biplot.prcomp depending on which PCA function is used) has some
scaling options for the axes:

scaling=1 form biplot (rows principal, columns standard)
scaling=0 covariance biplot (columns principal, rows standard)

Biplot Software in R

BIPLOTS IN PRACTICE

196

(in fact, scaling=alpha produces a biplot where rows are scaled by the singu-
lar values to power alpha and the columns to power 1–alpha, so scaling=0.5
gives the symmetric biplot).

In addition there is a general biplot function biplot for plotting two given sets
of points simultaneously.

The ca package described in Chapters 8 to 10 has several biplot options in the
plot.ca function, although they are referred to as “maps”. These are summa-
rized below:

map="rowprincipal" plots rows in principal, columns in standard coordi-
nates

map="colprincipal" plots columns in principal, rows in standard coordi-
nates

map="symbiplot" symmetric biplot, with row and column coordinates
scaled by the square roots of the singular values on
respective axes

map="rowgreen" plots rows in principal, columns in contribution co-
ordinates

map="colgreen" plots columns in principal, rows in contribution co-
ordinates

In addition, there are two options "rowgab" and "colgab", due to Ruben
Gabriel, who proposed multiplying the standard coordinates by the respective
masses, whereas in the contribution biplots "rowgreen" and "colgreen" the
square roots of the masses are used, which gives the specific interpretation in
terms of contributions.

An R package caGUI is available as an interactive front end to the ca package. Fi-
nally, there is an interactive package BiplotGUI for R, mostly aimed at calibrated
biplots, which were illustrated in Chapters 2 and 3 when introducing the biplot
idea through regression and generalized linear models (see comments about cal-
ibrated biplots in the Epilogue).

COMPUTATION OF BIPLOTS

197

