
Biplots in Practice 
 

MICHAEL GREENACRE   

Professor of Statistics at the Pompeu Fabra University 

Appendix D Offprint 

 Epilogue  

First published: September 2010  
ISBN: 978-84-923846-8-6  

Supporting websites:  
http://www.fbbva.es  

http://www.multivariatestatistics.org 
 
 

© Michael Greenacre, 2010  
© Fundación BBVA, 2010 





APPENDIX

Epilogue

Up to now this book has presented known facts about the theory and practice of
biplots. In this final section I give my personal opinions about biplots and their
use in practice. For, as the title of the book declares, this book is mainly about the
practice and indeed the usefulness of this method as a research tool. I start off
with a reflection of what the term “biplot” means and then treat some specific as-
pects which have a greater or lesser repercussion when it comes to practical ap-
plications.

In my understanding of the term, a biplot is a representation of the rows and the
columns of a data matrix in a joint display, with few dimensions, usually two-di-
mensional but nowadays possibly three-dimensional when viewed with special
software such as R’s rgl package. Because of the orthogonality and nested prop-
erty of the principal axes of a biplot, further dimensions can be studied separate-
ly, for example, by considering axes 3 and 4 of the solution space in a planar dis-
play (see Exhibit 14.11, for example, where different planar projections were
displayed). The essential feature of the biplot is that it displays scalar products be-
tween row and column points of a target matrix (the data matrix, appropriately
centred and normalized), according to the fundamental result in Gabriel’s origi-
nal paper, formulated in Chapter 1 as:

target matrix = left matrix · right matrix

(see also the abstract from Ruben Gabriel’s original article, which is reproduced
in the Bibliography). The left and right matrices of low rank (dimensionality), ob-
tained conveniently from the singular value decomposition (SVD), provide re-
spective row and column coordinates that are used to plot the rows and columns
as points or vectors as the case may be.

Let us suppose for convenience of description that the rows have been plotted as
points and the columns as vectors drawn from the origin of the display. The idea
of plotting columns as vectors gives the idea that each column has been regressed
on the axes of the biplot and the vector actually represents the regression plane
(or hyperplane for a three-dimensional biplot). This plane is defined uniquely by
the vector that indicates the direction of steepest ascent of the plane, that is the
gradient vector with elements equal to the regression coefficients. Since contours
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(or isolines) of a plane are at right-angles to this gradient vector, estimated values
of each row for that column can be obtained by projecting them onto the biplot
axis through the vector.

These are thus the basic properties of a biplot. Variations exist, for example the
row points could be approximating a particular interpoint distance, or they could
be standardized along principal axes. Then there are nonlinear transformations
of the data, which induce biplot axes with nonlinear scales, or weighting of the
points when determining the solution space, but the biplot basically results in two
sets of points, one of which is optionally drawn as a set of vectors.

The idea of calibrating biplot axes adds understanding about how the biplot
works and how to interpret it. As shown in Chapters 2 and 3, adding tic marks to
a biplot axis that passes through a biplot vector and then calibrating the axis ac-
cording to the original scale of the corresponding variable, gives insight to what
the biplot vector actually represents. But, when a user has digested this fact once
and for all, I can see no practical purpose in leaving the calibrations on the final
analyses reported in research findings. Firstly, it is only possible to include cali-
brations when biplot axes are few, which is seldom the case apart from small ed-
ucational examples; secondly, they clutter up the display and detract from its sim-
plicity; and thirdly, they do not allow one to define a meaningful length of the
biplot vector, which can be a useful aspect of the biplot’s interpretation (see, for
example, the contribution biplot, discussed again below).

The comments above about calibrated biplots lead naturally into the subject of
what constitutes good graphical design for a biplot display. The objective should
be to include as little as possible, but enough for the user to make a correct in-
terpretation of what is presented. Overloading the biplot with calibrations, for ex-
ample, for every biplot axis is not necessary, since it is known that the centre of
the biplot represents the (weighted) average of each variable (data matrices are
almost always centred) and all one needs to see is how the points line up on a bi-
plot axis above and below their average. Knowing the scale of the biplot is rele-
vant, but the tic marks and calibrations on the principal axes should be few and
discrete; sometimes we have added principal variances (or inertias) and their per-
centages to axes, or simply mentioned these in the text or caption. Including what
Tufte calls “chartjunk” just increases the biplot’s ink-to-information ratio unnec-
essarily, but things like coloured labels, symbols of different sizes and textures are
all useful instruments for communicating more about the plot. Omitting labels of
uninteresting points is also a useful strategy. Consider the two versions of the
same correspondence analysis solution in Exhibit D.1, performed on a table of
fatty acid compositions for a sample of fish. The upper biplot is the asymmetric
one with row points (fish, displayed by dots) in principal coordinates and column

Calibration of biplot axes

Good biplot design
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Exhibit D.1:
Two versions of the same
correspondence analysis of
a data set of compositions
of 40 fatty acids in 42 fish:
on top, the asymmetric
(“rowprincipal”) biplot,
including all the points; at
the bottom, the contribution
biplot, with only the most
contributing fatty acids
shown
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points in standard coordinates, and because of the very low inertia in these data
two scales are necessary. This biplot is very cluttered with points and the fact that
there are three groups of fish is partly obscured; also, it would be even worse if we
added the vectors to the variable points (the fatty acids). The lower biplot is the
contribution biplot, which only needs one scale and where only fatty acids are dis-
played that contribute more than average to the principal axes, which gives a
much cleaner and easier to interpret solution. Only six out of the original 40 fatty
acids remain and it is seen clearly that there are mainly three fatty acids, each
associated with one of the three groups. Furthermore, the fatty acid 16:1(n–7)
which is responsible for characterizing the group of fish at bottom left is not at all
clear in the upper biplot, where one might have thought that the most important
one was 16:1(n–9). Since these six fatty acids are the major contributors, the bi-
plot would remain almost the same if the other 34 fatty acids were removed from
the data set and a subset correspondence analysis performed.

The dimension-reduction step is necessary to be able to visualize a high-dimen-
sional data set in a few dimensions, but variance (or inertia) is lost in the process.
There is a measure of variance retained and variance lost, in raw amounts or per-
centages, and also numerical diagnostics for how much variance of each point,
row or column, is retained in the solution and how much is lost. On the other
hand, the solution space is determined by different rows and columns in varying
amounts. A point may be displayed accurately in a biplot, with little variance lost,
but it could have played almost no role in determining the solution (the reverse
is not true: points that generally determine the solution are usually quite accu-
rately displayed). The contributions, both of the solution to the variances of in-
dividual points and of the points to the solution space, are important numerical
diagnostics that support the interpretation of the biplot.

The idea of incorporating the contribution of a column (for example) into the
length of its corresponding vector is, in my opinion, one of the most important
variations of the biplot display. Users have difficulty in deciding which vectors are
important for the interpretation of the biplot, so by rescaling individual vectors
to correspond to their part contributions to the principal axes, the important vec-
tors are immediately made more evident to the user, since their lengths along
principal axes are the longest.

So why do we not always use the contribution biplot? The answer is, very simply,
that in gaining this property of the interpretation, another property is inevitably
lost. For example, in the correspondence analysis (CA) of the “benthos” data set,
the standard coordinates of the species points indicate vertex, or extreme unit
profile, positions and each sample point lies at a weighted average of the species
points, using the sample’s profile elements across species as weights (see Exhibit

Quality of a biplot

The contribution biplot
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8.3)—this is often called the barycentric property of CA. When the standard coordi-
nates are multiplied by the square roots of their masses to reduce them to their
contribution coordinates, this property is lost but now the main contributing
species are visible. In the log-ratio analysis of the data set “morphology” in Chap-
ter 7, the ability to detect equilibrium relationships when variables fall on straight
lines (see Exhibit 7.3) would clearly be lost if each variable were rescaled into its
position in terms of contribution coordinates. So, as I said in the Epilogue to Cor-
respondence Analysis in Practice, you cannot “have your cake and eat it too”—all the
desirable properties one might like to have in a biplot cannot be included in one
display, although we can introduce additional graphical “tricks” such as omitting
the labels of low contributing points and making the size of symbols related to an
omitted aspect of the data, such as the point masses (see Exhibit 8.3, for example).

The solution of a biplot is found by performing a weighted least-squares fit of the
product of the left and right matrices to the target matrix, a solution that is con-
veniently encapsulated in the SVD. One way of computing the SVD is by a process
known as alternating least squares. Suppose that the target matrix is S and the ap-
proximation S ≈ XYT is sought. Writing this approximation as an equality by in-
cluding a matrix of residuals, or “errors”:

S = XYT + E

is recognizable as a regression problem if either X or Y T is fixed. For example, for
a fixed X the least-squares solution for YT is (XTX)–1XTS. If there are weights asso-
ciated with the rows of the matrix, where the weights are in the diagonal matrix
Dw , then the weighted least-squares solution for YT would be (XTDw X)–1XTDw S.
Having estimated YT, it is regarded as fixed and a similar regression, with or with-
out weights, is performed to estimate a new X. From step to step it can be proved
that the residual sum of squared errors reduces, so the process is repeated until
the solution converges. At each step the estimates have to be orthonormalized:
for example, the left matrix X would be orthonormalized so that XTDw X = I, which
means that the regression step is just a matrix multiplication.10 The main point is
that the left and right matrices are solutions of alternative regressions, with or
without weights.

Computation of a biplot
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10. This is the more complicated aspect of this algorithm, which we omit here. In practice the dimensions can
be computed one at a time: start with any vector x with the same number of elements as rows of S and
which has been normalized as xTx =1, then a solution for y simplifies as STx; then normalize y so that yTy = 1
and estimate x as Sy; normalize x and continue this process until convergence, which gives the first pair of
singular vectors, the singular value α being the norm of the final x or y before being normalized to 1. This
first dimension is then subtracted out from S,. i.e. S is replaced by S − α xyT (using normalized x and y)
and the process is repeated to find the solution for the second dimension. The only difference when
weighted solutions are required is to normalize x and y at each step using the weights, and use weighted
least-squares regression in each step, which leads to the solution of a weighted SVD.



Since there are variations of the biplot display, the question arises as to how each
variation approximates the original data. The answer is quite simply that the ap-
proximation is always the same, with the definition of row and column weights de-
pending on the scaling of the biplot coordinates. The different biplots of a CA il-
lustrate what is meant. In Chapter 8, equation (8.2) defined correspondence
analysis in terms of the regular unweighted SVD of the matrix of standardized
residuals Dr

–½(P − rcT)Dc
–½:

Dr
–½(P – rcT)Dc

–½ = UDαV
T, where UTU = VTV = I

(notice here that the identification conditions on U and V do not contain
weights). If we were interested in biplotting the standardized residuals them-
selves, we would use coordinate matrices such as UDα and V, or UDα

½ and VDα
½ for

example. But CA is not biplotting the standardized residuals—in the case of the
asymmetric CA biplots, for example, one set of points is plotted in principal co-
ordinates and the other set in standard coordinates, for example F = Dr

–½UDα

for rows and Γ = Dc
–½ V for columns, or Φ = Dr

–½U for rows and G = Dc
–½ VDα for

columns—see the definitions in (8.3) and (8.4). In order to have the correspon-
ding matrix of scalar products on the right hand side of the CA definition, the tar-
get matrix in the defining equation becomes:

Dr
–1PDc

–1 − 11T = ΦDαΓT, where ΦTDrΦ = ΓTDcΓ = I

i.e., in various scalar forms: pij /(ricj) − 1 = (pij /ri − cj)/cj = (pij /cj − ri )/ri = Σk
αkφikγjk

(the first form shows the ratio of the data element to its expected value, while the
second and third forms show how the asymmetric map represents the profiles’ de-
viations from their expected values relative to their expected values). This defines
a generalized (or weighted) SVD where the rows and columns are weighted by the
row masses r and column masses c respectively. Associating the singular values
with the left or right singular vectors in this version of the definition (the stan-
dard coordinates) will give the two types of asymmetric biplot and the low-di-
mensional approximation of the scalar products to the target matrix is by weight-
ed least-squares using the masses. 

The form of the definition for the contribution biplot, where the column points,
for example, are rescaled by the square roots of their respective masses, plots F
and V jointly. This implies the generalized SVD in terms of the row profiles Dr

–1P:

(Dr
–1P − 1cT)Dc

–½ = ΦDαVT, where ΦTDrΦ = VTV = I

that is, with rows weighted by the row masses r, and columns unweighted. The tar-
get matrix consists of the standardized profile elements (pij /ri − cj)/cj

½, hence the

The optimality of a biplot
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alternative name of standard biplot for the contribution biplot. The weighting
makes sense since the row profiles should be weighted but not the columns,
which have already been standardized.

Another development of the biplot is that of so-called “nonlinear” biplots, where
variables are represented by curves and estimation of the values for each case on
a particular variable is performed by finding the point on the curve closest to the
case. While being of theoretical interest, nonlinear biplots are unlikely to find
favour amongst users because of their complexity of interpretation, which de-
tracts from the simplicity of the “linear” biplot treated in this book and its desir-
able properties such as decomposition of variance, nesting of dimensions and par-
allel contours for each biplot axis. It is extremely difficult to make any deductions
about the properties of variables and their inter-relationships when they are rep-
resented by different curves. My view is that it is much better, from a practical
point of view, to consider appropriate nonlinear transformations of the original
variables, which users and non-specialists can understand, and then use the linear
biplot, bearing in mind the nonlinear scales of the resulting biplot axes.

The SVD as a mathematical result has been known for more than a century, and
its property of identifying matrix approximations of any desired rank by (weight-
ed) least squares makes it the most useful matrix result in the area of multivariate
data analysis. Algorithms for computing the SVD are well-researched and provide
global optima for the dimension-reducing methods that have been presented in
this book. The SVD has appeared, is appearing and will appear in every area of
scientific research where tabular data are collected. Wherever there is an SVD,
there is a biplot. Data are often collected by a painstaking and expensive process
and I have always thought it a pity that the richness of a data set is not fully ex-
posed to the researcher who has taken so much trouble to collect it. The biplot is
a tool for exploring complex data sets of all types and sizes. The future of the bi-
plot is in its further application in many different areas of research, to make data
more transparent to the researcher, and to assist in the interpretation and in the
discovery of structures and patterns, both suspected and unsuspected.

Nonlinear biplots

The future of biplots
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