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CHAPTER

Regression Biplots

Biplots rely on the decomposition of a target matrix into the product of two ma-
trices. A common situation in statistics where we have such a decomposition is in
regression analysis: Ŷ = XB, where X is a set of explanatory variables, B contains
estimated regression coefficients and the values in Ŷ are the estimated values of
one or more response variables. Thus Ŷ serves as the target matrix and X and B
serve as the left and right matrices (actually BT, since the right matrix of the de-
composition is written in transposed form—see (1.4)). The coefficients in B are
estimated to minimize the sum-of-squared errors between the original response
variables in Y and the estimated values in Ŷ. This context provides an excellent
introduction to biplots as an approximation to higher-dimensional data.
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Throughout this book we shall be using a small data set which serves as an excel-
lent example of several biplot methods. The context is in marine biology and the
data consist of two sets of variables observed at the same locations on the sea-bed:
the first is a set of biological variables, the counts of five groups of species, and
the second is a set of four environmental variables. The data set, called “bioenv”,
is shown in Exhibit 2.1. The species groups are abbreviated as “a” to “e”. The en-
vironmental variables are “pollution”, a composite index of pollution combining
measurements of heavy metal concentrations and hydrocarbons; “depth”, the
depth in metres of the sea-bed where the sample was taken; “temperature”, the
temperature of the water at the sampling point; and “sediment”, a classification
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of the substrate of the sample into one of three sediment categories. Initially, we
are going to consider the biological variables and only two of the environmental
variables, “pollution” and “depth”.

To start off let us consider species “d” as a response variable, denoted by d, being
modelled as a linear function of two explanatory variables, “pollution” and
“depth”, denoting these two variables by y and x respectively. Simple linear re-
gression leads to the following estimates of the response variable:

Exhibit 2.1:
Typical set of multivariate

biological and
environmental data: the

species data are counts,
while the environmental

data are continuous
measurements, each

variable on a different
scale; the last variable is a

categorical variable
classifying the substrate as

mainly  C (=clay/silt), 
S (=sand) or  

G (=gravel/stone)

Simple linear regression
on two explanatory

variables 
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SITE NO. SPECIES COUNTS ENVIRONMENTAL VARIABLES

a b c d e Pollution Depth Temperature Sediment

s1 0 2 9 14 2 4.8 72 3.5 S

s2 26 4 13 11 0 2.8 75 2.5 C

s3 0 10 9 8 0 5.4 59 2.7 C

s4 0 0 15 3 0 8.2 64 2.9 S

s5 13 5 3 10 7 3.9 61 3.1 C

s6 31 21 13 16 5 2.6 94 3.5 G

s7 9 6 0 11 2 4.6 53 2.9 S

s8 2 0 0 0 1 5.1 61 3.3 C

s9 17 7 10 14 6 3.9 68 3.4 C

s10 0 5 26 9 0 10.0 69 3.0 S

s11 0 8 8 6 7 6.5 57 3.3 C

s12 14 11 13 15 0 3.8 84 3.1 S

s13 0 0 19 0 6 9.4 53 3.0 S

s14 13 0 0 9 0 4.7 83 2.5 C

s15 4 0 10 12 0 6.7 100 2.8 C

s16 42 20 0 3 6 2.8 84 3.0 G

s17 4 0 0 0 0 6.4 96 3.1 C

s18 21 15 33 20 0 4.4 74 2.8 G

s19 2 5 12 16 3 3.1 79 3.6 S

s20 0 10 14 9 0 5.6 73 3.0 S

s21 8 0 0 4 6 4.3 59 3.4 C

s22 35 10 0 9 17 1.9 54 2.8 S

s23 6 7 1 17 10 2.4 95 2.9 G

s24 18 12 20 7 0 4.3 64 3.0 C

s25 32 26 0 23 0 2.0 97 3.0 G

s26 32 21 0 10 2 2.5 78 3.4 S

s27 24 17 0 25 6 2.1 85 3.0 G

s28 16 3 12 20 2 3.4 92 3.3 G

s29 11 0 7 8 0 6.0 51 3.0 S

s30 24 37 5 18 1 1.9 99 2.9 G



d̂ = 6.135 − 1.388y + 0.148x         R 2 = 0.442 (2.1)

From a statistical inference point of view, both y and x are significant at the 5%
level—their p-values based on the classical t-tests are 0.008 and 0.035 respective-
ly.1 The regression coefficients on the explanatory variables have the following in-
terpretation: for every unit increase of pollution (variable y), abundance of
species d decreases by 1.388 on average; while for every unit increase of depth
(variable x), abundance of d increases by 0.148 on average. The amount of vari-
ance in d explained by the two variables is 44.2%, which means that the sum of
squared errors across the 30 observations, Σi (d i − d̂ i )

2, which is minimized by the
linear regression, is 55.8% of the total variance of d. 

The estimated regression coefficients in (2.1), i.e. the “slope” coefficients −1.388
and 0.148, have scales that depend on the scale of d and the scale of the two ex-
planatory variables y and x, and so are difficult to compare with each other. To re-
move the effect of scale, all variables should be expressed in a comparable scale-
free way. The most common way of doing this is to standardize all variables by
centring them with respect to their respective means and dividing them by their re-
spective standard deviations. We denote the standardized values of the three vari-
ables (their “z-scores”) as d *, y* and x* respectively, each having mean zero and
variance 1 thanks to the standardization. The estimated regression relationship
(2.1), including what are called the standardized regression coefficients, then becomes:2

d̂ * = −0.446y* + 0.347x* R 2 = 0.442 (2.2)

Notice that there is no intercept, since all variables have mean zero. The regression
coefficients now quantify the change in the standardized value of the response vari-
able estimated from an increase of one standardized unit (i.e., one standard devi-
ation) of each explanatory variable. The two coefficients can be compared and it
seems that pollution has a bigger (negative) effect on species d than the (positive)
effect of depth. Exhibit 2.2 shows schematically the difference between the regres-
sion plane for the unstandardized and standardized variables respectively.

The standardized regression coefficients in (2.2) have an interesting geometric
interpretation. They are the partial derivatives of d̂ * with respect to the two vari-
ables y* and x*, which are written mathematically as:

Standardized regression
coefficients

Gradient of 
the regression plane
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1. All calculations can be followed and repeated using the R code given in the Computational Appendix.
2. Since some regression programs do not automatically give the standardized regression coefficients, these can

be easily calculated from the original ones as follows: standardized coefficient = original coefficient ×(standard
deviation of explanatory variable / standard deviation of response variable). See the Computational Ap-
pendix for examples of this calculation.



As a vector [−0.446 0.347]T these two numbers indicate the gradient of the plane
(2.2), that is the direction of steepest ascent up the plane in the right-hand image
of Exhibit 2.2.

The complete geometry of the regression can then be drawn in the two-dimen-
sional space of the explanatory variables, as shown in Exhibit 2.3. This is the
scatterplot of the two variables y* and x*, whose values are given in the table
alongside the figure. The brown arrow is the gradient vector, with coordinates 
−0.446 on the y*-axis and 0.347 on the x*-axis. So here we are looking at the
plane on the right of Exhibit 2.2 from the top, down onto the y*−x* plane. The
arrow indicates the gradient vector, pointing in the direction of steepest ascent
of the plane, which is all we need to know to understand the orientation of the
plane.

Now the contours of the regression plane, i.e., the lines of constant “height”, by
which we mean constant values of d̂ *, form lines perpendicular to the gradient
vector, just like in Exhibit 2.3. From the steepness of the plane (which we know
from the gradient vector) it seems intuitively obvious that we can work out the
heights of these contours on the standardized scale of d and then transform these
back to d’s original scale—in Exhibit 2.3 we show the contours for 0, 5, 10, 15 and
20. That is, we can calibrate the biplot axis for species d (we will explain exactly
how to calibrate this axis below). Hence, to obtain the estimates of d for any giv-
en point y* and x* we simply need to see which contour line it is on, that is proj-
ect it perpendicularly onto biplot axis d.

Exhibit 2.2:
Schematic geometric

representation in three-
dimensions of the

regression plane for the
original data (on left) and

standardized data (on
right), where the response

variable is the vertical
dimension, and the two

explanatory variables are on
the “floor”, as it were

(imagine that we are looking
down towards the corner of

a room). The plane on the
right goes through the origin

of the three axes

Contours of
the regression plane
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Seeing which contour line corresponds to any given sample point is thus equiva-
lent to projecting the point perpendicularly onto the biplot axis and reading off
the value. Exhibit 2.4 shows an example of estimating the value of d for the fourth
sample, giving a value of 4.06. This is not equal to the observed value of 3 (see
original data on the left of Exhibit 2.4), but we do not expect it to be, since the
variance explained by the regression of d on y and x is 44.2%. If we projected all
the sample points onto the d-axis, and recovered the original values exactly, this
would mean the regression plane passes exactly through the data points and the
explained variance would be 100%. We are not in this situation, unfortunately,
since our estimated values explain only 44.2% of the variance of d, in other words
55.8% of the variance is due to differences between the estimates and the ob-
served values.

All this sounds exactly like what we described in Chapter 1, particularly concern-
ing Exhibit 1.3, and indeed it is, because the regression equation (2.2) is nothing
else but the scalar product between the gradient vector (indicating the biplot
axis) and a general point in the x*−y* plane. Hence, this equation for estimating
the response, given values of the two predictors as a biplot point, can be convert-
ed into the scalar product between this biplot point and the biplot gradient vec-
tor (the regression coefficients). This is equivalent to projecting the biplot point
onto the biplot axis defined by the gradient vector, which is calibrated in units of
the response variable. 

Exhibit 2.3:
The regression plane for
species d is shown by its
gradient vector in the
x*−y*space of the
explanatory variables.
Contour lines (or isolines)
are drawn at selected
heights
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In Chapter 1 we showed how to calibrate a biplot axis—one unit is inversely pro-
portional to the length of the corresponding biplot vector (see equation (1.7)).
In regression biplots the situation is the same, except the unit is a standardized
unit and we prefer to calibrate according to the original scale of the variable. To
express the regression coefficients on the original scale of d in the present case,
we would simply multiply them by the standard deviation of d, which is 6.67, mak-
ing them 6.67 × −0.446 and 6.67 × 0.347 respectively. Then the calculation is as
before, using the rescaled regression coefficients:

In general, the calculation is:

(2.3)

Exhibit 2.4:
Projection of sample 4 onto

the biplot axis, showing
sample 4’s original values

in the table on the left and
standardized values of the

predictors on the right. The
predicted value is 4.06,

compared to the observed
value of 3, hence an error of

1.06. The sum of squared
errors for the 30 samples

accounts for 55.8% of the
variance of d, while 

the explained variance 
(R 2) is 44.2%

Calibrating a regression
biplot axis
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that is, the unit length of the standardized variable divided by the (unstandard-
ized) variable’s standard deviation. As far as the centre of the biplot is concerned,
the variable’s average is at the origin—in the present example the origin should
be at the value 10.9, the average of d. We know that values are increasing in the
direction of the biplot vector (towards bottom right in Exhibits 2.3 and 2.4), and
also have computed the length of one unit on the biplot axis, so we have all we
need to calibrate the axis. In the exhibits we calibrated at every 5 units, so the dis-
tance interval along the axis between consecutive values is 5 × 0.265 = 1.325.

Each of the five species in Exhibit 2.1 can be linearly regressed on the two pre-
dictors “pollution” (y) and “depth” (x), using standardized scales for all variables,
to obtain standardized regression coefficients that can be used as biplot vectors.
Exhibit 2.5 shows the five regression analyses in one biplot. Each biplot vector
points in the direction of steepest ascent of the regression plane. The larger the
regression coefficients, the longer are the arrows and thus the steeper is the re-
gression plane. If two biplot vectors are pointing in the same direction (for ex-
ample, b and d) their relationships with the explanatory variables are similar.
Species c clearly has an opposite relationship to the others, in that its regression

Regression biplots 
with several responses

Exhibit 2.5:
Regression biplot of five
response variables, species
a to e, in the space of the
two standardized
explanatory variables. The
overall explained variance
for the five regressions is
41.5%, which is the
measure of fit of the biplot
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coefficient with pollution is positive while all the others are negative. The biplot
axes through the biplot vectors can each be calibrated in the same way as ex-
plained above for response variable d, and the projections of the 30 samples
(numbered in Exhibit 2.5) onto a particular biplot axis give the estimated values
for that response. How close these estimated values are to the observed ones is
measured by the R 2 for each regression: the percentages of explained variance,
respectively for a to e, are 52.9%, 39.1%, 21.8%, 44.2% and 23.5%, with an over-
all R 2 of 41.5%. This overall value measures the quality of the regression biplot to
explain all five response variables.

Finally, to show how regression biplots fit the general definition of the biplot giv-
en in Chapter 1, we write the estimation equation (2.4) for all five response vari-
ables in a matrix decomposition formulation as follows:

(2.4)

that is,               Ŝ = UBT

where the target matrix is the 30 × 5 matrix of estimated response values (stan-
dardized), the left matrix of the decomposition is the 30 × 2 matrix of standard-
ized explanatory variables and the right matrix contains the standardized regres-
sion coefficients. The target matrix is an estimation Ŝ of the observed (stan -
dardized) responses S = [a* b* c* d* e*], which can be written as: S ≈ Ŝ, which
reads “S is approximated by Ŝ”. In this case the sense of the approximation is that
of least-squares regression, where U = [y* x*] is the fixed matrix of explanatory
variables and the regression coefficients BT are calculated in the usual way by least
squares as follows:

BT = (UTU)−1UTS (2.5)

The complete process of the regression biplot can thus be summarized theoreti-
cally as follows:

S ≈ Ŝ = U(UTU)−1UTS (2.6) 

The matrix U(UTU)−1UT is called the projection matrix of S onto the explanatory
variables in U. In fact, we can write S as the following sum:

S = Ŝ + (S − Ŝ)
S = (U(UTU)−1UT)S + (I − U(UTU)−1UT)S (2.7)
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where the first term is the projection of S onto the space of the explanatory vari-
ables, and the second term is the projection of S onto the space orthogonal to
(uncorrelated with) the explanatory variables. (I denotes the identity matrix, a di-
agonal matrix with 1’s down the diagonal.) The part of S that is explicable by the
explanatory variables U can be biplotted according to (2.6), as we have done in
Exhibit 2.5, using U as the left matrix and the standardized regression coefficients
in (UTU)−1UTS as the right matrix.

Notice that in these initial chapters we consider the case of only two explanatory
variables, which conveniently gives a biplot in two dimensions. If we used the
three variables “pollution”, “depth” and “temperature” we would need three di-
mensions to show the variables and the regression relationships. We should also
stress again that the “bi” in biplot does not refer to the bidimensional nature of
the figures, but the fact that we depict rows and columns together. The case of
three or more explanatory variables will be dealt with in later chapters (from
Chapter 5 onwards).

1. A regression biplot shows the cases (usually rows) and a set of response variables
(usually columns) of a data matrix in the same joint representation, which is
constructed using a set of explanatory variables, or predictors. Cases are shown
as biplot points with respect to standardized values of the predictors and vari-
ables are shown as biplot vectors, each according to the standardized regres-
sion coefficients of its regression on the predictors.

2. The biplot vectors represent the separate linear regressions and define biplot
axes onto which the case points can be projected. The axes can be calibrated
so that predicted values from the regressions can be read off.

3. The quality of the regression biplot is measured by the percentages of variance
explained by the individual regressions that build the biplot.

SUMMARY:
Regression Biplots
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