
Biplots in Practice 
 

MICHAEL GREENACRE   

Professor of Statistics at the Pompeu Fabra University 

Chapter 3 Offprint 

 Generalized Linear Model Biplots  

First published: September 2010  
ISBN: 978-84-923846-8-6  

Supporting websites:  
http://www.fbbva.es  

http://www.multivariatestatistics.org 
 
 

© Michael Greenacre, 2010  
© Fundación BBVA, 2010 





CHAPTER

Generalized Linear Model Biplots

Generalized linear models are a wide class of regression-type models for different
types of data and analytical objectives. Linear regression is the simplest form of a
generalized linear model, where the mean of the response variable, given values
of the predictors, is a linear function of the predictors and the distribution of the
data around the mean is normal. The regression coefficients are estimated by fit-
ting lines or planes (or “hyperplanes” for more than two explanatory variables)
by least squares to the data points. Then, as we saw in Chapter 2, estimated mean
values of response variables can be obtained by projecting case points onto vari-
able vectors. This idea is developed and extended in two ways to generalized lin-
ear models: first, the mean of the response can be transformed nonlinearly, and
it is this transformed mean that is modelled as a linear function of the predictors;
and second, the probability distribution of the response variable around the
mean function can be different from the normal distribution. In this chapter we
first discuss data transformations and then give two examples of generalized lin-
ear model biplots: Poisson regression biplots and logistic regression biplots.
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As an intermediate step towards considering generalized linear models (GLM), let us
suppose that we wished to transform the response variables and then perform the
regression analysis. There could be many reasons for this, such as making the data
more symmetrically distributed, or reducing the effect of outliers. Power trans-
formations are commonly used on data such as the species counts in Exhibit 2.1
—these can be either a square root or double square root (i.e., fourth root) trans-
formation, or the Box-Cox family of power transformations which includes the
logarithmic transformation. For example, considering species d again, let us con-
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sider the fourth root transformation d0 = d ¼. Fitting this transformed response to
the two standardized predictors y* (“pollution”) and x* (“depth”) as before leads
to the following equation for predicting d0: 

d̂ 0 = 1.642 − 0.288y* + 0.060x* R 2 = 0.276 (3.1)

Notice first that we have not centred the transformed data, hence the presence of
the constant in the regression—the constant is equal to the mean of d0 because
the predictor variables are centred. Also, because the power transformation tends
to homogenize the variances (i.e., make them more similar in value), we have not
standardized d0 either. If some transformed variables have more variance, then we
would like to preserve this fact.3

The complete set of results for all of the transformed responses is given in Ex-
hibit 3.1.

The constants give the predicted value for mean values of y and x, when y* = x* = 0;
for example, the average of d ¼ is 1.639, which transforms back to a value of d of
1.6394 = 7.216.

The regression coefficients can again be used as biplot vectors, shown in Exhibit
3.2. The positions of the sample points are identical to the previous Exhibits 2.3
and 2.4. The difference between this biplot and the previous one for untrans-
formed data (Exhibit 2.4) is that the regression surfaces (in the third dimension,
“above” the biplot space) indicated by the biplot vectors are linear planes for the
transformed variables, and thus nonlinear in terms of the original ones. So
the calibration of the biplot axes in terms of the original variables is more com-
plicated because the intervals between scale units are not constant.

Exhibit 3.1:
The regression coefficients

for the five regressions
where in each case the

response variable has been
fourth root transformed.

Overall variance explained 
is 33.9%

Biplot with nonlinear
calibration
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3. In this example the standard deviations of the original frequencies varied from 3.96 for species e to 12.6 for
species a, while in the double square root transforms the range is from 0.602 for species d to 0.907 for
species c.  Notice that the ordering of the standard deviations is not necessarily preserved by the power trans-
formation of the data, even though the transformation is monotonic.

Std devn Constant y* x* R 2

a ¼ 0.905 1.492 –0.672 0.073 60.5%
b ¼ 0.845 1.301 –0.506 0.006 36.2%
c ¼ 0.907 1.211 0.387 0.086 15.9%
d ¼ 0.602 1.639 –0.288 0.060 27.6%
e ¼ 0.755 0.815 –0.375 –0.255 22.8%



For example, let us consider variable d again, and its transformed version d0 = d ¼.
Exhibit 3.3 illustrates the calculations which we describe now. The centre of the
map corresponds to the mean of the transformed variable, 1.639, which we al-
ready calculated above to correspond to 7.216 of the original variable, so we know
that the value of d at the origin is 7.216 and that it is increasing in the direction
of the arrow, i.e., downwards in the biplot.

The first “tic mark” we would put on the biplot axis through d is at the value 10,
which on the transformed scale is 10¼ = 1.778. The difference between this value
and the mean value of 1.639 is 0.139. A unit length on the axis is, as before, 1 di-
vided by the length of the biplot vector: , as shown
in Exhibit 3.3. Hence, the distance along the biplot axis to put the tic mark is
0.139 × 3.399 = 0.472. The next tic mark at d = 15 corresponds to 15¼ = 1.968, a
difference of 1.968 − 1.778 = 0.190 from the position of d = 10, hence at a distance
of 0.190 × 3.399 = 0.646 from the tic mark for 10. Going in the other direction,
to put a tic mark for d = 5, the transformed value is 5¼ = 1.495, a difference rela-
tive to the position of d = 10 of 1.778 − 1.495 = 0.283, or 0.283 × 3.399 = 0.962
units away from the tic mark for 10 in the negative direction for d (i.e., upwards

+  =/1 0.288 0.0602 3.3992

Exhibit 3.2:
Biplot of the fourth root
transformed species data,
showing biplot vectors given
by regression coefficients in
Exhibit 3.1, i.e., the
directions of planes
corresponding to
regressions of the
transformed species
variables on standardized
“pollution” ( y*) and
standardized “depth” (x*)
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in Exhibit 3.2). The tic mark for 1 (same on original and transformed scales) is
0.495 transformed units away from 5, and so 0.495 × 3.399 = 1.682 units away from
5 on the biplot axis. The nonlinearity of the calibration on the biplot axis is clear
in Exhibit 3.3, with the tic marks getting closer together as d increases. The con-
tours are still perpendicular to the biplot axis, so the interpretation is still based
on projecting the biplot points onto the biplot axes, bearing in mind the con-
tracting scale due to the transformation.

The fourth root transformation of the response variable is a monotonically increas-
ing function, hence the calibration of the biplot axis shows values increasing in
the direction of the biplot vector, albeit increasing in a nonlinear fashion. Al-
though seldom done, a non-monotonic transformation, for example a quadratic
transformation which rises and then falls, could also be applied to the response
variable. The effect would be that the calibrations on the biplot axis would in-
crease and then decrease again.

The regression biplots in Chapter 2 and those described above with trans-
formed responses use regression coefficients for the biplot vectors that have
been obtained using least-squares fitting of the response variable, with or with-

Exhibit 3.3:
Nonlinear calibration of

biplot axis through reponse
variable  d. Because  d has

been fourth root
transformed, the

calibrations are not at
regular intervals

Poisson regression
biplots 
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out transformation, to the explanatory variables. This idea originates in the as-
sumption that, conditional on the explanatory variables, the distribution of
the response variable in the population is normal, with the conditional mean
of the response equal to a linear function of the explanatory variables. In gen-
eralized linear modelling this idea is extended to different distributions, but
in every case some transformation of the mean of the response, called the link
function, is modelled as a linear function of the explanatory variables. Linear
regression is the simplest example of a generalized linear model (GLM) where
there is no transformation of the mean (i.e., the link function is the identity
function) and the conditional distribution is normal. The coefficients of a
GLM are estimated using the principle of maximum likelihood, which has as
a special case the least-squares procedure when the assumed distribution is
normal.

The first example of a “non-normal” GLM that we consider is Poisson regression.
Since the species variables a to e are counts, a more appropriate distribution
would be the Poisson distribution. In Poisson regression the link function is log-
arithmic, so the model postulates that the logarithm of the response mean is a lin-
ear function of the explanatory variables, and the assumed conditional distribu-
tion of the response is Poisson. Fitting this model for each of the five responses is
just as easy in R as fitting regular regression, using the glm function (see the Com-
putational Appendix) and the estimated coefficients are given in Exhibit 3.4. No-
tice that the way the success of the model fit is measured is the opposite here, in
the sense that for good fit the “error” should be low. In the simple regression case,
subtracting the “error” from 1 would give R 2.

Notice the difference between the GLM and what we did before: we have not log-
transformed the original data, which would have been a problem since there are
zeros in the data, but have rather modelled the logarithm of the (conditional)
mean as a linear function of the explanatory variables. For example, in the case
of species d the model estimates are given by:

log(d−) = 2.296 − 0.337y* + 0.199x* (3.2)

Exhibit 3.4:
The regression coefficients
for the five Poisson
regressions of the species
responses on the predictors
“pollution” y* and “depth”
x*. Rather than variance
explained, the “error” of the
model fit is reported as the
deviance of the solution
relative to the null deviance
when there no predictors (so
low values mean good fit)
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Constant y* x* Error

log(a−) 2.179 –1.125 –0.067 0.388
log(b−) 1.853 –0.812 0.183 0.540
log(c−) 2.041 0.417 0.053 0.831
log(d−) 2.296 –0.337 0.199 0.614
log(e−) 0.828 –0.823 –0.568 0.714



Exponentiating both sides, this gives the equation:

d− = exp(2.296) · exp(−0.337y*) · exp(0.199x*) (3.3)

so that the exponentials of the coefficients −0.337 and 0.199 model the multi-
plicative effect on the estimated mean response: a one (standard deviation) unit
increase in y* multiplies d− by exp(−0.337) = 0.714 (a 28.6% decrease), while a
one unit increase in x* multiplies d− by exp(0.199) = 1.221 (a 22.1% decrease).
Again, the coefficients define a biplot vector in the space of the explanatory vari-
ables. To calibrate the vector, the value at the origin corresponds to the value of
the mean response at the means of the explanatory variables y* = x* = 0, that is
d− = exp(2.296) = 9.934. To place tic marks on the biplot axis we would again cal-
culate what a unit length on the axis is: , which cor-
responds to a unit on the logarithmic scale. Using this we can work out where tic
marks should be placed for values of d− such as 0, 5, 10, 15, etc.—this will be a log-
arithmic scale on the biplot axis, with intervals between tic marks contracting as
the response variable increases. We do not show the Poisson biplot here, but it
can be computed using the script in the Computational Appendix.

Let us suppose, as is indeed common in ecological research, that we are interest-
ed more in the presence/absence of species than their actual abundances; that is,
we replace all positive counts by 1 and leave the zeros as 0. The mean of 0/1 data
is the probability p of a presence (i.e., a 1), so we write pa , pb , …, pe, for the prob-
abilities of the five species presence/absence variables. Logistic regression can be
used to predict the dichotomous presence/absence response variables, given the
explanatory variables. This is another GLM where the assumed distribution of the
0/1 data is binomial and the link function is the logit, or log-odds, function. The
logit function is log(p/(1−p)), abbreviated as logit(p). Again, the fitting of this
GLM is a simple option of the R glm function (see the Computational Appendix)
and the estimated coefficients are listed in Exhibit 3.5.

Using species d once more as an example, the estimating equation is:

(3.4)

and the coefficients −1.177 and −0.137 estimate the changes in the log-odds of the
probability of species d. Using the coefficients we can again make a biplot of the
five species in the space of y* and x*, shown in Exhibit 3.6. This could be cali-
brated in units of odds, pd /(1 − pd), or transformed back to units of pd as follows,
thanks to the inverse transformation:

+  =/1 0.337 0.1992 2 2.556

Logistic regression
biplots
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(3.5)

So for y* = x* = 0, exp(2.712) = 15.06 and the estimated probability of d is
15.06/16.06 = 0.938 (from Exhibit 2.1 species d occurs at 27 out of 30 sites, so
its probability of a presence is high, but comes down mainly when y* increases). So
the origin of the map corresponds to an estimated pd of 0.938. Where would the

Exhibit 3.5:
The regression coefficients
for the five logistic
regressions of the species
responses on the predictors
“pollution” y* and “depth”
x*, showing their error
deviances

Exhibit 3.6:
Logistic regression biplot of
the presence/absence data
of the five species. The
calibration for species d is
shown in the form of
contours in units 
of predicted probability of
presence. The scale is linear
on the logit scale but 
non-linear on the probability
scale, as shown
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Constant y* x* Error

logit(pa) 2.384 –2.889 0.863 0.464
logit(pb) 1.273 –1.418 –0.143 0.756
logit(pc) 0.831    0.973 0.315  0.911
logit(pd) 2.712 –1.177 –0.137 0.798
logit(pe) 0.253 –1.280 –0.786  0.832

1 +
. . y x− −* .= 2 712 1 177 0 137exp( *

pd
))

. . y x− −* .2 712 1 177 0 137exp( *))
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tic mark be placed for 0.95? The corresponding logit is log(0.95/0.05) = 2.944,
which is 2.944 − 2.712 = 0.232 units higher on the logit scale from the origin.
The unit length is once more the inverse of the length of the biplot vector

, so the tic mark for 0.95 is at a distance 0.232 × 0.844
= 0.196 from the origin in the positive direction of d. Exhibit 3.6 shows the logistic
regression biplot with the contours of the probability function for species d.

In a similar way the logistic regression surfaces could be indicated for each of the
other species as a sequence of probability contour lines at right angles to the bi-
plot vectors in Exhibit 3.6, where the origin corresponds to the probability for the
means of the explanatory variables and the probability contours increase in the
direction of the respective biplot vectors.

1. A regression biplot can still be made if a nonlinear transformation of the re-
sponse variable is performed: the effect is that the tic marks on the biplot axes
are not at equal intervals, that is, the calibration is nonlinear.

2. Generalized linear models generalize linear regression to include different rela-
tionships between the conditional mean of the response variable and the ex-
planatory variables as well as different distributions for the response variable.
In each generalized linear model the conditional mean, transformed by the
link function, is modelled as a linear function of the explanatory variables.

3. Examples of generalized linear models are Poisson regression (for count data),
where the link function is the logarithm and the assumed distribution is Pois-
son; and logistic regression (for discrete responses), where the link function is
the logit and the assumed distribution is binomial.

+  =/1 1.177 0.1372 2 0.844

SUMMARY:
Generalized Linear 

Model Biplots
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