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CHAPTER

Reduced-Dimension Biplots

In the previous chapter, multidimensional scaling (MDS) involved reduction of di-
mensionality in order to visualize a high-dimensional configuration of points in a
low-dimensional representation. In some high-dimensional space distances be-
tween points are exact (or as near exact as possible for non-Euclidean dissimi-
larity measures), while they are approximated in some optimal sense in the low-
dimensional version. In this chapter we look at the theory and practice of
dimensionality reduction, and how a data matrix of a certain dimensionality can
be optimally approximated by a matrix of lower, or reduced, dimensionality. Al-
gebraically, the geometric concept of dimensionality is equivalent to the rank of
a matrix, hence this chapter could also be called reduced-rank biplots. This topic
is concentrated almost entirely on one of the most useful results in matrix alge-
bra, the singular value decomposition (SVD). Not only does this result provide us
with a solution to the optimal reduced-rank approximation of a matrix, but it
also gives the coordinate values of the points in the corresponding biplot display.
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Data matrices usually have many rows (cases) and many columns (variables), such
as the 13 × 6 matrix of Exhibit 4.3. The rank of a matrix is the minimum number
of row or column vectors needed to generate the rows or columns of the matrix
exactly through linear combinations. Geometrically, this algebraic concept is
equivalent to the dimensionality of the matrix—if we were lucky enough to have a
data matrix of rank 2, then we could represent the rows or columns in a two-di-
mensional plot. In practice, however, no large matrix is of low rank, but we can
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approximate it optimally by a matrix of low rank and then view this approximate
matrix in a low-dimensional space.

Suppose that Y is an n × m matrix with rank r (in most examples in practice, r will
be n or m, whichever is the smaller). Then the idea of matrix approximation is to
find another n × m matrix Ŷ of lower rank p < r that resembles Y as closely as pos-
sible. Closeness can be measured in any reasonable way, but least-squares ap-
proximation makes the solution of the problem particularly simple. Hence we
want to find a matrix Ŷ that minimizes the following objective function over all
possible rank p matrices:

(5.1)

The notation trace[…] signifies the sum of the diagonal elements of a square ma-
trix, and the square matrix (Y − Ŷ)(Y − Ŷ)T has exactly all the squared differences
between the corresponding elements of Y and Ŷ down its diagonal. Thanks to our
choosing a least-squares objective function, this minimization problem is very sim-
ple to solve using a famous result in matrix algebra.

The singular value decomposition, or SVD for short, is one of the most useful re-
sults in matrix theory. Not only will it provide us with the solution of the matrix ap-
proximation problem described above, but it also provides the solution in exactly
the form that is required for the biplot. The basic result is as follows: any rectan-
gular n × m matrix Y, of rank r, can be expressed as the product of three matrices: 

Y = U DαV
T (5.2)

where U is n × r, V is m × r and Dα is a r × r diagonal matrix with positive num-
bers α1, α2,…, αr , on the diagonal in descending order: α1 ≥ α2 ≥ … ≥ αr > 0. Fur-
thermore, the columns of U and of V are orthonormal, by which we mean that they
have unit length (sum of squares of their elements = 1) and are orthogonal, or
perpendicular to one another (i.e., scalar products between columns = 0, that is
they are geometrically perpendicular to one another); this property can be writ-
ten as UTU = VTV = I (where I denotes the identity matrix, a diagonal matrix with
1’s down the diagonal). The columns u1, u 2, …, ur, and v1, v2, …, vr , of U and V
are called left and right singular vectors respectively, and the values α1, α2,…, αr the
singular values of Y.

If the rank of Y happened to be low, say 2 or 3, then (5.2) would give us immedi-
ately the form “target matrix = left matrix · right matrix” of the biplot we need

Singular value
decomposition (SVD)
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(see (1.2)) for a two- or three-dimensional display, the only decision being how to
distribute the matrix Dα of singular values to the left and the right in order to de-
fine the biplot’s left matrix and right matrix (we shall discuss this critical decision
at length soon). In the more usual case that the rank of Y is much higher than 2
or 3, then the SVD provides us immediately with any low-rank matrix approxima-
tion we need, as follows. Define Ŷ as in (5.2) but use only the first p columns of
U, the upper left p × p part of Dα and the first p columns of V, in other words the
first p components of the SVD: Ŷ = U[p] Dα [p]V

T
[p], where the subindex [p] means the

“first p components”. Ŷ is of rank p and is exactly the solution to the least-squares
matrix approximation problem. And, once more, the decomposition provided by
the SVD is exactly in the form that we need for the biplot. 

The singular values provide us with quantifications of the closeness of the ap-
proximation of Ŷ to Y. The sum-of-squares of the singular values is equal to the
sum-of-squares of the matrix Y: trace(YY T) = Σi Σj

y 2
i j = α 2

1 + α 2
2 + … + α 2

r , and the
sum-of-squares of the matrix Ŷ is trace(Ŷ ŶT) = α 2

1 + α 2
2 + … + α 2

p , the sum of the
first p squared singular values. The latter is expressed as a fraction (or percent-
age) of the first to quantify the quality of the approximation, while the remainder
from 1 quantifies the error (5.1) of the approximation.

Consider again the target matrix on the left-hand side of (1.1) and let us pretend
we do not know that it decomposes as shown there. The SVD of this matrix cal-
culated in R using the built-in function svd in the second command below:

> Y<-matrix(c(8,5,-2,2,4,2,0,-3,3,6,2,3,3,-3,-6,-6,-4,1,-1,-2),
nrow=5)

> svd(Y)
$d
[1] 1.412505e+01 9.822577e+00 6.351831e-16 3.592426e-33

$u
[,1] [,2] [,3] [,4]

[1,] -0.6634255 -0.4574027 -0.59215653 2.640623e-35
[2,] -0.3641420 -0.4939878 0.78954203 2.167265e-34
[3,] 0.2668543 -0.3018716 -0.06579517 -9.128709e-01
[4,] -0.2668543 0.3018716 0.06579517 -1.825742e-01
[5,] -0.5337085 0.6037432 0.13159034 -3.651484e-01

$v
[,1] [,2] [,3] [,4]

[1,] -0.7313508 -0.2551980 -0.6276102 -0.0781372
[2,] -0.4339970 0.4600507 0.2264451 0.7407581
[3,] 0.1687853 -0.7971898 0.0556340 0.5769791
[4,] 0.4982812 0.2961685 -0.7427873 0.3350628

Some numerical 
examples
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The svd function returns the three parts of the decomposition: the singular val-
ues in $d, the left singular vectors in $u and the right singular vectors in $v. It is
clear from the singular values that only the first two are nonzero, so the matrix is
of rank 2 and can be written as (showing values to 4 decimal places):

To define a left and right matrix for the biplot, we can—for example—split the
singular values in the middle equally between the left and right singular vectors.
That is, multiply the two left singular vectors (two columns above) and the two
right singular vectors (two rows above) by the square roots                              and

respectively. (This way of splitting the singular values equally
between the left and right vectors leads to the so-called “symmetric biplot”).
This gives the following biplot solution and corresponding plot in Exhibit 5.1,
which is: 

In (5.1) the problem of minimizing fit to a given matrix by another of lower rank
was formulated. The idea can be generalized to include a system of weighting on
both the rows and columns of the table, the objective being to give them differ-
ential importance in the fitting process. For example, in survey analysis the rows
are respondents that are often not representative of the population from which
they are sampled. If there are proportionally too many women, say, in the sample,
then giving lower weights to the individual female respondents can restore the
representativeness in the sample. The same is true for the column variables: there
are many reasons why some variables may need to be downweighted, for example
their variance is by their very nature too high, or there are several variables that ba-
sically measure the same trait in the population. The idea of weighting can be car-
ried to the limit of giving zero weight to some respondents or variables—this is the
idea behind supplementary points, which will be explained in future chapters.

Suppose then that we have a set of positive weights w1, w2, …, wn for the rows of
a matrix and a set of positive weights q1, q2, …, qm for the columns. We can as-

. .9 8226 = 3 1341

Generalized matrix
approximation and SVD
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sume that the weights add up 1 in each case. Then, rather than the objective
(5.1), the weighted (or generalized) matrix approximation is formulated as fol-
lows:

(5.3)

This solution involves a weighted (or generalized) SVD, which can be solved us-
ing the usual (unweighted) SVD as follows: (1) pre-transform the matrix Y by
multiplying its rows and columns by the square roots of the weights, (2) perform
the SVD on this transformed matrix as in (5.2), and (3) “untransform” the left
and right singular vectors by the inverse square roots of the respective row and
column weights. These three steps can be expressed as follows:

(1) S = Dw
½ YD q

½ (5.4) 
(2) S = UDβV

T (5.5)
(3) U

~
= Dw

–½ U, and V
~

= Dq
–½ V (5.6)

Exhibit 5.1:
Symmetric biplot of the rank
2 example, rows labelled 1
to 5, columns A to D. The
square roots of the singular
values are assigned to both
left and right singular
vectors to establish the left
and right coordinate
matrices. The row–column
scalar products perfectly
reproduce the original target
matrix
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The best-fitting matrix of rank p, which minimizes (5.3), is calculated as before,
but using U

~
and V

~
:

Ŷ = U
~

[p]Dβ[p]V
~

[p]
T (5.7) 

Notice that U
~

and V
~

have columns (the generalized singular vectors) that are of
unit length and orthogonal in terms of weighted sum of squares and weighted
sum of cross-products: U

~ TDwU
~

= V
~ TDqV

~
= I. The singular values β1, β 2,…, βp in

(5.7) are then split between the left and right singular vectors to obtain the left
and right matrices in the biplot, either by assigning their square roots to the left
and right, or by assigning the singular values completely to either the left or the
right. 

The introduction of weights into the matrix approximation broadens the class of
methods that can be defined in terms of the SVD. All the biplots of interest turn
out to be special cases, depending on the definition of the matrix Y to be ap-
proximated, and the weights w and q assigned to the rows and columns. A useful
general method, which we call generalized principal component analysis (PCA), in-
cludes almost all the techniques to be described in the rest of this book. In this def-
inition we think of the matrix either as a set of rows or as a set of columns—we shall
assume that we think of the rows as points in a multidimensional space.

Suppose that the rows of X (n × m) define n points x1, x 2, …, xn, in m-dimensional
space—notice that vectors are always denoted as column vectors, so that 

The points have weights in the n × 1 vector w, where the weights are positive and
sum to 1: 1Tw = 1 (1 is an appropriate vector of ones in each case). Distances in
the m-dimensional space are defined by a weighted metric where the dimensions
are weighted by the positive elements of the m × 1 vector q: for example, the square
of the distance between the i-th and i'-th rows x i and x i' is (x i − x i')

TDq(x i − x i'). The
objective is to find a low-dimensional version of the rows of X which are the clos-
est to the original ones in terms of weighted least-squared distances.

There is a side result which proves that the low-dimensional solution necessarily
includes the centroid (weighted average) of the points, so we can centre all the
points beforehand. This is easily proved by assuming that the low-dimensional so-

Generalized principal
component analysis
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lution does not include the centroid and then arrive at a contradictory conclu-
sion. The centroid can, in fact, be thought of as the closest “zero-dimensional sub-
space” (i.e., a point) to the n points. This means that we first centre the row points
by subtracting their centroid wTX:

Y = X − 1w TX = (I − 1w T)X (5.8)

The matrix (I − 1w T) is called the centring matrix : the rows of Y now have a cen-
troid of 0: wTY = 0.

To find an approximating matrix Ŷ of rank p < m, the rows of which come closest
to the rows of Y in terms of weighted sum of squared distances, we need to solve
the following:

(5.9)

which is identical to (5.3). Hence the solution is contained in the generalized
SVD described above, with the matrix approximation given by (5.7). The coordi-
nates of the row points in the low-dimensional display are given by

F = U
~

[p]Dβ[p] (5.10) 

called the principal coordinates (of the rows in this case), which thus form the left
matrix of the biplot. The right matrix representing the columns is then V

~
[p], defin-

ing biplot axes. The singular values are thus assigned totally to the singular vec-
tors corresponding to the rows in this case. Most of the subsequent chapters will
deal with applications of this theory.

The MDS problem of Chapter 4 can be formulated as a SVD problem as well, in
fact the matrix decomposed is square symmetric and the SVD reduces to its spe-
cial case, the eigenvalue/eigenvector decomposition, or eigendecomposition. The
general formulation for the case when points are weighted is as follows:

– Suppose that the matrix of squared distances between n objects is denoted
by D(2) and that the objects are weighted by the n positive elements in the
vector w.

– Double-centre D(2) using the weights in w (the centring matrix is I − 1wT,
pre-multiplied to centre the rows, or transposed and post-multiplied to cen-
tre the columns), weight the points by pre- and post-multiplying by Dw

½, and
finally multiply the result by −½ before calculating the eigendecomposition

Classical 
multidimensional scaling
with weighted points
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S = −½ Dw
½(I − 1wT)D(2)(I − 1wT)TDw

½ = UDλU
T (5.11)

− Calculate the coordinates of the points: F = Dw
−½ UDλ

½ (5.12)

If we start off with a matrix X as in the previous section, where squared distances
between rows are calculated in the metric Dq , with points weighted by w, then the
above algorithm gives the same coordinates as the principal coordinates in (5.10),
and the eigenvalues here are the squared singular values in the generalized PCA:
λ k = βk

2.

1. Reduced-dimension biplots rely on approximating a matrix of high dimen-
sionality by a matrix of lower dimensionality. The matrix of low dimensionali-
ty is then the target matrix for the biplot.

2. If approximation of a matrix is performed using a least-squares objective, then
the singular value decomposition (SVD) provides the solution in a very con-
venient form as the product of three matrices: the left and right matrices of the
biplot are then provided by distributing the second matrix of the SVD (the di-
agonal matrix of singular values) to the first and third matrices (of singular
vectors).

3. The objective of least-squares matrix approximation can be generalized to in-
clude weights for the rows and the columns. This leads to a simple modifica-
tion of the SVD, called the generalized SVD, involving pre-transformation of
the matrix to be approximated and post-transformation of the singular vectors.

4. Generalized principal component analysis (PCA) is a geometric version of ma-
trix approximation, where a set of n vectors in m-dimensional space is project-
ed onto a subspace of lower dimensionality. The resultant reduced-dimension
biplot depicts the approximate positions of the n points along with m direc-
tions showing the biplot axes. 

5. Multidimensional scaling (MDS), including the general case where points
have any positive weights, can also be formulated as an eigenvalue/eigenvec-
tor special case of the SVD problem, because the matrix decomposed is square
and symmetric. The resultant coordinates are identical to those found in gen-
eralized PCA, if the interpoint distances are defined using the same metric.

SUMMARY:
Reduced-Dimension

Biplots
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