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CHAPTER

Principal Component Analysis Biplots

Principal component analysis (PCA) is one of the most popular multivariate meth-
ods in a wide variety of research areas, ranging from physics to genomics and mar-
keting. The origins of PCA can be traced back to early 20th century literature in
biometrics (Karl Pearson) and psychometrics (Harold Hotelling). The method is
inextricably linked to the singular value decomposition (SVD)—this powerful re-
sult in matrix theory provides the solution to the classical PCA problem and, con-
veniently for us, the solution is in a format leading directly to the biplot display.
In this section we shall consider various applications of PCA and interpret the as-
sociated biplot displays. We will also introduce the notion of the contribution bi-
plot, which is a variation of the biplot that will be especially useful when the rows
and/or columns have different weights.
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The last section of Chapter 5 defined a generalized form of PCA where rows and
columns were weighted. If we consider the 13 × 6 data matrix of Exhibit 4.3, there
is no need to differentially weight the rows or the columns: on the one hand, the
countries should be treated equally, while on the other hand, the variables are all
on the same 1 to 9 scale, and so there is no need to up- or downweight any vari-
able with respect to the others (if variables were on different scales, the usual
way to equalize out their roles in the analysis is to standardize them). So in this

PCA of data set 
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example all rows and all columns obtain the same weight, i.e. w = (1/13)1 and
q = (1/6)1, where 1 is an appropriate vector of ones in each case. Referring to
(5.9), the matrix Dq defines the metric between the row points (i.e., the countries
in this example), so that distances between countries are the average squared dif-
ferences between the six variables.

The computational steps are then the following, as laid out in the last section of
Chapter 5. Here we use the general notation of a data matrix X with I rows and J
columns, so that for the present example I = 13 and J = 6. 

– Centring (cf. (5.8)):  Y = [I − (1/I )11T]X (6.1)

– Weighted SVD (cf. (5.4) and (5.5)):
S = (1/I )½ Y(1/J )½ = (1/I J )½ Y = UDβV

T (6.2)

– Calculation of coordinates; i.e., the left and right cf. (5.6) and (5.10)): 
F = I ½ UDβ and Γ = J ½ V (6.3)

Exhibit 6.1:
PCA biplot of the data in

Exhibit 4.3, with the rows in
principal coordinates, and

the columns in standard
coordinates, as given in

(6.3). This is the row-metric-
preserving biplot, or form

biplot (explained on
following page). Remember

that the question about
hospitality was worded

negatively, so that the pole
“friendly” is in the opposite

direction to the vector
“hospitality”—see 

Exhibit 4.3
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We use the term “weighted SVD” above even though there is no differential
weighting of the rows and columns: the whole of the centred matrix Y is simply
multiplied by a constant, (1/I J )½. The resultant biplot is given in Exhibit 6.1.

When the singular values are assigned totally to the left or to the right, the re-
sultant coordinates are called principal coordinates. The other matrix, to which no
part of the singular values is assigned, contains the so-called standard coordinates.
The choice made in (6.3) is thus to plot the rows in principal coordinates and the
columns in standard coordinates. From (6.3) it can be easily shown that the prin-
cipal coordinates on a particular dimension have average sum of squared coordi-
nates equal to the square of the corresponding singular value; for example, for F
defined in (6.3):

F TDw F = (1/I ) (I ½ UDβ)
T(I ½ UDβ) = Dβ

TUTUDβ = Dβ
2 (6.4)

By contrast, the standard coordinates on a particular dimension have average sum
of squared coordinates equal to 1 (hence the term “standard”); for example, for
Γ defined in (6.3):

Γ TDq Γ = (1/J )( J ½ V)T( J ½ V) = V TV = I (6.5)

In this example the first two squared singular values are β 1
2 = 2.752 and β 2

2 = 1.665.
If F has elements fi k , then the normalization of the row principal coordinates on the
first two dimensions is (1/13)Σi

fi 1
2 = 2.752 and (1/13)Σi

fi 2
2 = 1.665. For the col-

umn standard coordinates γjk the corresponding normalizations are (1/6)Σj
γj1

2 = 1
and (1/6)Σj

γj 2
2 = 1.

There are various names in the literature for this type of biplot. It can be called
the row-metric-preserving biplot, since the configuration of the row points approxi-
mates the interpoint distances between the rows of the data matrix. It is also
called the form biplot, because the row configuration is an approximation of the
form matrix, composed of all the scalar products YDqY

T of the rows of Y: 

YDqY
T = FΓ TDqΓF T = FF T (6.6)

In fact, it is the form matrix which is being optimally represented by the row points,
and—by implication—the inter-row distances which depend on the scalar products.

If the singular values are assigned totally to the right singular vectors in (6.2),
then we get an alternative biplot called the covariance biplot, because it shows the
inter-variable covariance structure. It is also called the column-metric-preserving bi-
plot. The left and right matrices are then defined as (cf. (6.3)):

Principal and standard
coordinates

Form biplot

Covariance biplot
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– Coordinates in covariance biplot:  Φ = I ½ U and G = J ½ V Dβ (6.7)

The covariance biplot is shown in Exhibit 6.2. 

Apart from the changes in scale along the respective principal axes in the row and
column configurations, this biplot hardly differs from the form biplot in Exhibit
6.1. In Exhibit 6.1 the countries have weighted sum of squares with respect to
each axis equal to the corresponding squared singular value, while in Exhibit 6.2
it is the attributes that have weighted sum of squares equal to the squared singu-
lar values. In each biplot the other set of points has unit normalization on both
principal axes. 

In the covariance biplot the covariance matrix Y TDwY = (1/I )Y TY between the
variables is equal to the scalar product matrix between the column points using
all the principal axes:

Y TDwY = GΦTDwΦGT = GGT (6.8)

Exhibit 6.2:
PCA biplot of the data in

Exhibit 4.3, with the
columns in principal

coordinates, and the rows in
standard coordinates, as
given in (6.7). This is the
column-metric-preserving

biplot, or covariance biplot
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and is thus approximated in a low-dimensional display using the major principal
axes. Hence, the squared lengths of the vectors in Exhibit 6.2 approximate the
variances of the corresponding variables—this approximation is said to be “from
below”, just like the approximation of distances in the classical scaling of Chap-
ter 4. By implication it follows that the lengths of the vectors approximate the
standard deviations and also that the cosines of the angles between vectors ap-
proximate the correlations between the variables. If the variables in Y were nor-
malized to have unit variances, then the lengths of the variable vectors in the bi-
plot would be less than one—a unit circle may then be drawn in the display, with
vectors extending closer to the unit circle indicating variables that are better
represented.

It can be easily shown that in both the form and covariance biplots the coordi-
nates of the variables, usually depicted as vectors, are the regression coefficients
of the variables on the dimensions of the biplot. For example, in the case of the
covariance biplot, the regression coefficients of Y on Φ = I ½ U are:

(Φ TΦ)−1Φ TY = (I U TU)−1(I ½ U)T(I J )½ UDβV
T         (from(6.2))

= J ½ DβV
T (because U TU = I)

which is the transpose of the coordinate matrix G in (6.7). In this case the re-
gression coefficients are not correlations between the variables and the axes (see
Chapter 2), because the variables in Y are not standardized—instead, the regres-
sion coefficients are the covariances between the variables and the axes. These co-
variances are equal to the correlations multiplied by the standard deviations of
the respective variables. Notice that in the calculation of covariances and stan-
dard deviations, sums of squares should be divided by I (=13 in this example)
and not by I − 1 as in the usual computation of sample variance.

The form biplot and the covariance biplot defined above are called dual biplots:
each is the dual of the other. Technically, the only difference between them is
the way the singular values are allocated, either to the left singular vectors in the
form biplot, which thus visualizes the spatial form of the rows (cases), or to the right
singular vectors in the covariance biplot, visualizing the covariance structure of
the columns (variables). Substantively, there is a big difference between these
two options, even though they look so similar. We shall see throughout the fol-
lowing chapters that dual biplots exist for all the multivariate situations treated.
An alternative display, especially prevalent in correspondence analysis (Chapter
8), represents both sets of points in principal coordinates, thus displaying row
and column structures simultaneously, that is both row- and column-metric-

Connection with 
regression biplots

Dual biplots
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preserving. The additional benefit is that both sets of points have the same dis-
persion along the principal axes and avoid the large differences in scale that are
sometimes observed between principal and standard coordinates. However, this
choice is not a biplot and its benefits go at the expense of losing the scalar-prod-
uct interpretation and the ability to project one set of points onto the other.
This loss is not so great when the singular values on the two axes being displayed
are close to each other—in fact, the closer they are to each other, the more the
scalar-product interpretation remains valid and intact. But if there is a large dif-
ference between the singular values, then the scalar-product approximation of
the data becomes degraded (see the Epilogue for further discussion of this
point).

From (6.6) and (6.8) it can be shown that the squared singular values are eigen-
values. If (6.6) is multiplied on the right by Dw F and (6.8) is similarly multiplied
on the right by DqG, and using the normalizations of F and G, the following pair
of eigenequations is obtained:

YDqY
TDwF = FDβ

2 and  Y TDwYDqG = GDβ
2,  where  F TDwF = GTDqG = Dβ

2 (6.9)

The matrices YDqY
TDw and YTDwYDq are square but non-symmetric. They are eas-

ily symmetrized by writing them in the equivalent form:

Dw
½ YDqY

TDw
½ Dw

½ F = Dw
½ FDβ

2 and  Dq
½ Y TDwYDq

½ Dq
½ G = Dq

½ GDβ
2

which in turn can be written as:

SSTU = Dβ
2   and  STSV = VDβ

2,  where  U TU = V TV = I (6.10) 

These are two symmetric eigenequations with eigenvalues λ k = βk
2 for k = 1, 2, …

The eigenvalues (i.e., squared singular values) are the primary numerical diag-
nostics for assessing how well the data matrix is represented in the biplot. They
are customarily expressed relative to the total sum of squares of all the singular
values—this sum quantifies the total variance in the matrix, that is the sum of
squares of the matrix decomposed by the SVD (the matrix S in (6.2) in this ex-
ample). The values of the eigenvalues and a bar chart of their percentages of the
total are given in Exhibit 6.3—this is called a scree plot.

It is clear that the first two values explain the major part of the variance, 57.6%
and 34.8% respectively, which means that the biplots in Exhibits 6.1 and 6.2 ex-
plain 92.4% of the variance. The pattern in the sequence of eigenvalues in the bar
chart is typical of almost all matrix approximations in practice: there are a few

Squared singular values
are eigenvalues

Scree plot
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eigenvalues that dominate and separate themselves from the remainder, with this
remaining set showing a slow “dying out” pattern associated with “noise” in the
data that has no structure. The point at which the separation occurs (between the
second and third values in Exhibit 6.3) is often called the elbow of the scree plot.
Other rules of thumb for deciding which axes reflect “signal” in the data, as op-
posed to “noise”, is to calculate the average variance per axis, in this case 4.777/6
= 0.796. Axes with eigenvalues greater than the average are generally considered
worth plotting.

Just like the eigenvalues quantify how much variance is accounted for by each
principal axis, usually expressed as a percentage, so we can decompose the vari-

Exhibit 6.3:
Scree plot of the six 
squared singular values
λ 1 , λ 2 , …, λ 6 , and a
horizontal bar chart of their
percentages relative 
to their total

Contributions to variance

Exhibit 6.4:
Decomposition of total
variance by dimensions and
points: the row sums are
the variances of the row
points and the columns
sums are the variances of
the dimensions
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ance of each individual point, row or column, along principal axes. But we can
also decompose the variance on each axis in terms of contributions made by each
point. This leads to two sets of contributions to variance, which constitute im-
portant numerical diagnostics for the biplot. These contributions are best un-
derstood in terms of the principal coordinates of the rows and columns (e.g., F
and G defined above). For example, writing the elements wi fi k

2 in an n × p matrix
(n rows, p dimensions) as shown in Exhibit 6.4. The solution in two dimensions,
for example, displays 100(λ1 + λ 2)/(λ1 + λ 2 + ··· + λp)% of the total variance. On
the first dimension 100wi fi1

2/λ1%of this dimension’s variance is accounted for by
point i (similarly for the second dimension)—this involves expressing each col-
umn in Exhibit 6.4 relative to its sum. Conversely, expressing each row of the table
relative to its row sum, 100 wi fi1

2/wiΣk
fi k

2% of point i’s variance is accounted for by
the first dimension and 100 wi fi 2

2/wi Σk
fi k

2% is accounted for by the second di-
mension. Notice that in this latter case (row elements relative to row sums) the
row weights cancel out. The ratio wi fi1

2/wiΣk
fi k

2 , for example, equals fi1
2/Σk

fi k
2,

which is equal to the squared cosine of the angle between the i-th row point and
the first principal axis, as illustrated in Exhibit 6.5.

In the principal component biplots defined in (6.3) and (6.7) the points in stan-
dard coordinates are related to their contributions to the principal axes. The fol-
lowing result can be easily shown. Suppose that we rescale the standard coordi-
nates by the square roots of the respective point weights, that is we recover the
corresponding singular vectors: 

from (6.3): (1/J )½ Γ = (1/J )½ J ½ V = V,

and from (6.7): (1/I )½ Φ = (1/I )½ I ½ U = U

Exhibit 6.5:
Geometry of variance

contributions: fik is the
principal coordinate of the
i-th point, with weight wi,
on the k-th principal axis.

The point is at distance 
di = Σk fik

2 f rom the
centroid of the points,

which is the origin of the
display, and θ is the angle

between the point vector (in
the full space) and the

principal axis. The square
cosine of θ is 

cos2(θ) = fik
2 / di

2 (i.e.,
the proportion of point i’s
variance accounted for by
axis k) and wifi1

2 is the
contribution of the i-th

point to the variance 
on the k-th axis

The contribution biplot
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Then these coordinates display the relative values of the contributions of the vari-
ables and cases respectively to the principal axes. In the covariance biplot, for ex-
ample, the squared value ui k

2 (where ui k is the (i,k)-th element of the singular vec-
tor, or rescaled standard coordinate of case i on axis k) is equal to (wi fi k

2)/λk,
where wi = 1/I here. This variant of the covariance biplot (plotting G and U to-
gether) or the form biplot (plotting F and V together) is known as the contribu-
tion biplot 4 and is particularly useful for displaying the variables. For example,
plotting F and V jointly does not change the direction of the biplot axes, but
changes the lengths of the displayed vectors so that they have a specific interpre-
tation in terms of the contributions. In Exhibit 6.1, since the weights are all
equal, the lengths of the variables along the principal axes are directly related to
their contributions to the axes, since they just need to be multiplied by a constant
(1/J )½ = (1/6)½ = 0.41. For PCA this is a trivial variation of the original definition
—because the point masses are equal, it just involves an overall rescaling of the
standard coordinates. But in other methods where the point masses are different,
for example in log-ratio analysis and correspondence analysis, this alternative bi-
plot will prove to be very useful—we will return to this subject in the following
chapters.

1. Principal component analysis of a cases-by-variables matrix reduces to a singular
value decomposition of the centred (and optionally variable-standardized) data
matrix. 

2. Two types of biplot are possible, depending on the assignment of the singular
values to the left or right singular values of the decomposition. In both the pro-
jections of one set of points on the other approximate the centred (and op-
tionally standardized) data.

3. The form biplot, where singular values are assigned to the left vectors corre-
sponding to the cases, displays approximate Euclidean distances between the
cases.

4. The covariance biplot, where singular values are assigned to the right vectors
corresponding to the variables, displays approximate standard deviations and
correlations of the variables. If the variables had been pre-standardized to
have standard deviation equal to 1, a unit circle is often drawn on the covari-
ance biplot because the variable points all have lengths less than or equal to 1
—the closer a variable point is to the unit circle, the better it is being dis-
played.

SUMMARY:
Principal Component
Analysis Biplots
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4. This variation of the scaling of the biplot is also called the standard biplot because the projections of points
onto vectors are approximations to the data with variables on standard scales, and in addition because it can
be used across a wide spectrum of methods and wide range of inherent variances.



5. The contribution biplot is a variant of the form or covariance biplots where the
points in standard coordinates are rescaled by the square roots of the weights
of the respective points. These rescaled coordinates are exactly the square
roots of the part contributions of the respective points to the principal axes,
so this biplot gives an immediate idea of which cases or variables are most
responsible for the given display.
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