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CHAPTER

Log-ratio Biplots

All the techniques described in this book are variations of generalized principal
component analysis defined in Chapter 5, and in Chapter 6 we demonstrated the
simplest version of principal component analysis. As mentioned at the end of
Chapter 6, when variables are on different scales they are usually standardized in
some way to equalize the roles of the variables in the analysis: this can be thought
of either as a pre-transformation of the data or equivalently as a reweighting of
the variables. Many other pre-transformations of the data are possible: for exam-
ple, to visualize multiplicative differences in the data the logarithmic transforma-
tion can be applied, in which case no further standardization is required. Data
that are proportions are often transformed by the arcsine function (i.e., the in-
verse sine function) or by some power function such as the square root. In this
chapter we treat the log-ratio transformation which is applicable to a common sit-
uation in practice: when data are all measured on the same units and strictly pos-
itive. The biplots that result have some special properties and this approach de-
serves a wider usage, hence a whole chapter is devoted to it.
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What has not been stated or explained up to now is that PCA assumes the data
are on interval scales. By this we mean that when we compare two values, we look
at their (interval) differences. For example, if we compare a temperature of 3.6
degrees with 3.1 degrees, we say that the difference is 0.5 degrees and this differ-
ence is comparable to the difference between 21.9 and 21.4 degrees. On the oth-
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er hand, many variables are measured on ratio scales where we would express the
comparison as a multiplicative, or percentage, difference. For example, a factory
worker obtains an increase in salary of 50 euros a month, but his salary before was
only 1000 euros a month, so this is in fact a 5% increase; if he were earning 3000
euros before, the increase would be 1.67%. Here it is relevant to compare the ra-
tios of the numbers being compared: 1050/1000 and 3050/3000, not their dif-
ferences. One has to carefully consider whether the observed variables are on in-
terval or ratio scales, as this affects the way we analyze them. In practice, the values
of the variable may be so far away from the zero point of their scale that the dis-
tinction between interval and ratio scale is blurred: for example, a 50-unit in-
crease on the much higher value of 100,000 is not much different, percentage-
wise, from a 50-unit increase on the higher value of 110,000.

The classic way to treat ratio-scale variables is to apply the logarithmic transfor-
mation, so that multiplicative differences are converted to additive differences:
log(x/y) = log(x) − log(y). If the variables are all ratio-scale in nature but in dif-
ferent measurement units, a blanket logarithmic transformation on all of them is
an excellent alternative to variable standardization. For example, an economist
might analyze the behaviour of several stock market indices such as Dow-Jones, Fi-
nancial Times, Nikkei, CAC40, etc (the variables) over time (the rows). Each vari-
able has its own inherent scale but differences between them are evaluated mul-
tiplicatively (i.e., percentage-wise). The logarithmic transformation will put them
all on comparable interval scales, perfect for entering into a PCA, without any
standardization necessary. In fact, standardization would be incorrect in this case,
since we want to compare the natural variation of the indices on the logarithmic
scale, and not equalize them with respect to one another. If we biplotted such
data, then the variables would be calibrated non-linearly on a logarithmic scale,
reminiscent of the biplots described in Chapter 3.

Log-ratios are a bit more specialized than logarithms. Not only are values com-
pared within each variable on a ratio scale, but also values within each case are
compared across the variables. This means that all the variables must be meas-
ured on the same scale. This approach originated in compositional data analysis
in fields such as chemistry and geology, where the variables are components of a
sample and the data express proportions, or percentages, of the components in
each sample (hence the values for each sample sum to 1, or 100%). It is equally
applicable to data matrices of strictly positive numbers such as values all in dol-
lars, measurements all in centimetres, or all counts. The R data set USArrests
has the 50 US states as rows, and the columns are the numbers of arrests per
100,000 residents of three violent crimes: murder, assault and rape. The “ratio” in
log-ratio analysis can refer either to ratios within a state or ratios within a crime.
The first five rows of this data set are:

The logarithmic
transformation

Log-ratios
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> USArrests[1:5,c(1,2,4)]
Murder Assault Rape

Alabama 13.2 236 21.2
Alaska 10.0 263 44.5
Arizona 8.1 294 31.0
Arkansas 8.8 190 19.5
California 9.0 276 40.6 

By ratios within a row (state) we mean the three unique ratios Murder/Assault,
Murder/Rape and Assault/Rape, which for Alabama are (to four significant fig-
ures) 0.05593, 0.6226 and 11.13 respectively. By ratios within a column (crime) we
mean the 50 × 49/2 = 1225 pairwise comparisons between states, of which the
first four for the column Murder are Alabama/Alaska: 1.320, Alabama/Arizona:
1.630, Alabama/Arkansas: 1.500, Alabama/California: 1.467. The basic idea in
log-ratio analysis is to analyze all these ratios on a logarithmic scale, which are in-
terval differences between the logarithms of the data. In general, for a I × J ma-
trix there are ½ I(I − 1) unique ratios between rows and ½ J( J − 1) unique ratios
between columns. Fortunately, we do not have to calculate all the above ratios—
there is a neat matrix result that allows us to work on the original I × J matrix and
effectively obtain all the log-ratios in the resulting map.

The algorithm for performing log-ratio analysis (LRA) relies on a double-centring
of the log-transformed matrix and a weighting of the rows and columns propor-
tional to the margins of the data matrix N:

– Let the row and column sums of N, relative to its grand total 
n = Σi Σj

ni j be denoted by r and c respectively:

r = (1/n)N1, c = (1/n)NT1 (7.1)

– Logarithmic transformation of elements of N: L = log(N) (7.2)

– Weighted double-centring of L: Y = (I − 1rT)L(I − 1cT)T (7.3)

– Weighted SVD of Y: S = Dr
½ Y Dc

½ = UDϕVT (7.4)

– Calculation of coordinates:

Principal coordinates of rows: F = Dr
−½ UDϕ, of columns: G = Dc

−½ VDϕ (7.5) 

Standard coordinates of rows: Φ = Dr
−½ U, of columns: Γ = Dc

−½ V (7.6)

(The above analysis is the weighted form of LRA, which is usually preferred
above the unweighted form, which has equal weights on the rows and columns;

Log-ratio analysis
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that is, unweighted LRA uses the same steps (7.1) to (7.6) but with r = (1/I)1,
c = (1/J)1.)

As before, two biplots are possible, but in this case they have completely symmet-
ric interpretations—in our terminology of Chapter 6, they are actually both form
biplots. The row-metric preserving biplot of F and Γ plots the rows according to
their log-ratios across columns, while the column-metric preserving biplot of G
and Φ plots the columns according to their log-ratios across rows. The points dis-
played in standard coordinates represent all the log-ratios by vectors between
pairs of points, called link vectors. It is the double-centring in (7.3) which gives
this special result that analyzing the matrix of I rows and J columns yields the
representation of all the pairwise log-ratios. To demonstrate these geometric fea-
tures with a simple example, we show the row-principal (F, Γ) LRA biplot of the
USArrests data in Exhibit 7.1. 

The double-centring removes one dimension from the data, hence the dimen-
sionality of this 3-column matrix is equal to 2 and Exhibit 7.1 displays 100% of the
variance, equal to 0.01790. This can be explained alternatively by the fact that any
of the three log-ratios is linearly dependent on the other two, hence the rank of
the matrix of log-ratios is 2. In this LRA biplot it is not the positions of the three
columns that are of interest but the link vectors joining them, which represent
the pairwise log-ratios. For example, the link from Rape to Assault represents the

Exhibit 7.1:
Log-ratio biplot of the

USArrests data set
from the R package, with

rows in principal and
columns in standard

coordinates. The columns
are connected by links

which represent the
pairwise log-ratios. 100%
of the log-ratio variance is

displayed. Notice the
different scales for the two

sets of points
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logarithm of Rape/Assault, and the link in the opposite direction represents the
negative of that log-ratio, which is the logarithm of Assault/Rape. A biplot axis
can be drawn through this link vector and the states projected onto it. The posi-
tion of Hawaii separates out at the extreme right of this Rape/Assault axis—in
fact, Hawaii has an average rate of Rape, but a very low rate of Assault, so the
Rape/Assault ratio is very high. Likewise, to interpret Murder/Assault log-ratios,
project the states onto this vector which is almost vertical. Hawaii projects high on
this axis as well, but it projects more or less at the average of the Murder/Rape
link. To know what “average” is, one has to imagine the link translated to the ori-
gin of the biplot, which represents the average of all the log-ratios; that is, draw
an axis through the origin parallel to the Murder/Rape link—the projection of
Hawaii is then close to the origin. Alternatively, project the origin perpendicu-
larly onto the links and this indicates the average point on the corresponding
log-ratios. 

The positions of the states in Exhibit 7.1 are a representation of log-ratio dis-
tances between the rows. This distance is a weighted Euclidean distance between
the log-ratios within each row, for example the squared distance between rows
i and i' :

(7.7)

This can be written equivalently as:

(7.8)

showing that log-ratios can be considered between the pair of values in corre-
sponding columns. Both (7.7) and (7.8) can be written equivalently in terms of
the logarithms of odds-ratios for the four cells defined by row indices i,i’ and col-
umn indices j,j' :

(7.9)

The log-ratio distances d jj'
2 between columns in the alternative column-principal

biplot are the symmetric counterparts of (7.7), (7.8) or (7.9), with index i substi-
tuting j in the summations, and ri substituting cj .

Log-ratio distance 
and variance
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The total variance of the data is measured by the sum of squares of (7.4), which
can be evaluated as a weighted sum of squared distances ΣΣi<i'

riri'd ii'
2 , for example

using the definition (7.9) of squared distance in terms of the odds-ratios:

(7.10)

In the above example the total variance is equal to 0.01790.

The LRA biplot works well for any strictly positive data that are all measured on
the same scale, and for which multiplicative comparisons of data elements, row-
or column-wise, make more sense than additive (interval) comparisons. Morpho-
metric data in biology are an excellent candidate for this approach, so we show
an application to a data set of 26 measurements on 75 Arctic charr fish. The data
come from a study of the diet and habitat of the fish and their relationships to
their body form and head structure.5 Exhibit 7.2 shows the abbreviated names of
the measurements.

The total variance in these data is 0.001961, much lower than the previous ex-
ample, indicating that the fish are quite similar to one another in an absolute
sense, which is not surprising since they are all of the same species. Nevertheless
there are interesting differences between them which may be related to their en-
vironment and diets. In Exhibit 7.3 shows the row-principal LRA biplot, where the
scale of the low-variance fish points has been enlarged 50 times to show them
more legibly. The fish have been labelled according to their sex (f = female, m =
male) and habitat where they were caught (L = littoral near shore, P = pelagic in
open sea). There does not seem to be any apparent connection with the distri-
bution of the fish and these labels—this can be tested formally using a permuta-
tion test, described in the Computational Appendix, while in Chapter 11 the top-
ic of direct comparison of groups of cases is treated (as opposed to comparisons
between individual cases, which is what is being analyzed here).

The variable points have no relevance per se, rather it is the links between all pairs
of variables that approximate the log-ratios—in fact, one could imagine all these
links transferred to the origin as vectors representing the pairwise log-ratios. Thus
the logarithm of the ratio Bc/Hpl (caudal peduncle length/posterior head length)
has one of the highest variances—its calibrations, proportional to the inverse of

Data set “morphology”

Diagnosing equilibrium
relationships
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5. Data provided by Prof. Rune Knudsen and the freshwater biology group of the Department of Arctic and
Marine Biology at the University of Tromsø, Norway.



Exhibit 7.2:
Morphological
characteristics from the left
side of Arctic charr fish.
Dashed lines indicate
heights, arrows indicate
widths 

Exhibit 7.3:
Log-ratio biplot of the
“morphology” data set, with
rows in principal and
column in standard
coordinates. Labels 
for the fish are: 
fL= female littoral; 
mL= male littoral; 
fP= female pelagic; 
mP= male pelagic.
34.5% of the total variance
is explained in this map
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the vector length would be very close together, and thus the projections of the fish
onto this direction would vary greatly in value. 

A further interesting property of log-ratio analysis is that a certain class of models
can be diagnosed between subsets of variables if they line up in straight lines in
the biplot. In Exhibit 7.3 there is a lining up of the three variables Fdw (dorsal fin
width), Fdl (dorsal fin length) and Fal (anal fin length), indicated by the dotted
line. This means that the log-ratios formed from Fdw, Fdl and Fal could be linearly
related—we say “could be” because only 34.5% of the variance is explained by the
map and this lining up in the low-dimensional projection of the biplot does not
necessarily mean that the points line up in the full space (however, not lining up
in the biplot means they definitely do not line up in the full space). To investigate
this possible relationship, Exhibit 7.4 shows a scatterplot of two log-ratios, and in-
deed there is a high positive correlation of 0.700 (R 2 = 0.490).

To quantify the relationship we find the best-fitting straight line through the
points (this is the first principal axis of the points, not the regression line), and

Exhibit 7.4:
Plot of two log-ratios

diagnosed from Exhibit 7.3
to be possibly in a linear

relationship (the correlation
is 0.70). The best-fitting line

through the scatterplot has
slope equal to 0.707 and

intersection 0.0107
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this line turns out to have slope 0.707, and intersection with the vertical axis at
0.0107. So the relationship simplifies to:

log(Fdw/Fal) = 0.707 log(Fdl/Fal) + 0.0107

Exponentiating:

Fdw/Fal = 1.0108 × (Fdl/Fal)0.707

Simplifying:

Fdw = 1.0108 × Fdl0.707 × Fal0.293 (7.11)

Then, calculating the predicted values of Fdw, the dorsal fin width, as a func-
tion of Fdl (dorsal fin length) and Fal (anal fin length), we get a good fit (cor-
relation of 0.750, R2 = 0.562) between the predicted and observed values (Ex-
hibit 7.5).

Exhibit 7.5:
Predicted versus actual
values of  Fdw (dorsal fin
width) based on the model
of (7.11) 
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Notice that the model of (7.11) really only has two parameters, the multiplicative
constant and a single parameter for the two “predictor” variables, because their
power coefficients sum to 1. It is this type of restricted parameter model that is
called an “equilibrium model” in certain areas of research such as genetics, chem-
istry and geology.

1. Log-ratio analysis applies to any table of strictly positive data, where all data en-
tries are measured on the same scale.

2. The original I × J table is logarithmically transformed and then double-cen-
tred, where the rows and columns are weighted proportionally to their mar-
ginal sums, followed by a SVD decomposition. The form biplot, where singu-
lar values are assigned to the left vectors corresponding to the cases, displays
approximate Euclidean distances between the cases based on all the pairwise
log-ratios of the variables. 

3. Log-ratio biplots represent the pairwise log-ratios between all the columns, or
between all the rows, as the case may be. These are the vectors that connect
the pairs of columns or pairs of rows.

4. If a subset of columns, for example, line up in straight lines, this diagnoses pos-
sible equilibrium relationships in that subset, in the form of a multiplicative
power model relating the columns.

SUMMARY:
Log-ratio Biplots
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