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CHAPTER

Correspondence Analysis Biplots

Correspondence analysis is the most versatile of the methods based on the SVD
(singular value decomposition) for visualizing data. It applies primarily to a cross-
tabulation (also called a contingency table) of two categorical variables but can
be extended to frequency tables, ratio-scale data in general, binary data, prefer-
ences and fuzzy-coded continuous data. Like log-ratio analysis, correspondence
analysis treats the rows and columns of a table in a symmetric fashion. There are
several equivalent asymmetric ways of thinking about the analysis, however, and
there are different associated biplots depending on whether the rows or columns
are regarded as the “variables” of the table. In this chapter we define and illus-
trate the basic algorithm of correspondence analysis and list its properties and re-
lationships to principal component analysis, log-ratio analysis, multidimensional
scaling and regression biplots. In subsequent chapters various extensions of cor-
respondence analysis will be described: the multiple form in Chapters 9 and 10,
and the constrained form in Chapter 12.

Contents

Profiles, masses and chi-square distances: data set “smoking”  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Correspondence analysis (CA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Asymmetric maps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Connection with PCA and MDS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Connection with regression biplots  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Inertia and inertia decomposition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Data set “benthos”  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Contribution CA biplot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
SUMMARY: Correspondence Analysis Biplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

All the methods in this book are based on what the French call a triple (triplet) of
information for a data set: the definition of (1) objects in a multidimensional
space, (2) their weights, and (3) the distances between them. In MDS (multidi-
mensional scaling) the distances form the original data set and an approximate
map of the objects is produced. The objects could, however, have different

Profiles, masses and 
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weights and the analysis would then represent distances involving points with
higher weight better than those with lower weight. In PCA (principal component
analysis), the original data is in the form of a rectangular data matrix and each
row (or column) defines a point in multidimensional space. The points could be
assigned different weights here as well, and if the distance function between the
points is Euclidean, then the SVD provides the solution for the low-dimensional
visualization of the points. In correspondence analysis (CA), these three concepts
of points, weights and distances are called profiles, masses and chi-square dis-
tances, respectively. We review their definitions using the classic “smoking” data
set (available in the ca package in R), given in Exhibit 8.1. The first table is the
cross-tabulation of all 193 staff members of an organization according to their cat-
egory in the organization and their level of smoking.

The row profiles, given in the second table, are the frequencies in the rows di-
vided by their row sums (e.g., 0.364 = 4/11). The last row contains the average
row profile, which is the profile of the column sums of the original table (e.g.,
0.316 = 61/193). Similarly, the column profiles in the third table are the fre-
quencies in the columns divided by the column sums and the average column
profile in the last column is the profile of the row sums in the original table (e.g.,
0.057 = 11/193). The row profiles are the points visualized in the row problem,
and the column profiles are those visualized in the column problem.

Each profile has a weight called a mass, equal to the marginal sum of that row or
column as the case may be, divided by the grand total of the table. For example,
the first row profile has mass 11/193 = 0.057, which is identical to the first ele-
ment of the average column profile. Thus the average column profile contains
the row masses, and the average row profile contains the column masses. The
masses are used to weight the profiles in the analysis, so that profiles based on
larger counts have a stronger role in the analysis.

Distances between profiles are calculated using the chi-square distance, which has
already been introduced in Chapter 4. The average row profile, for example,
apart from serving to centre the row profiles, defines the distance function be-
tween row profiles, using the inverses of its values. For example, the distance be-
tween the first two row profiles is:

This is a natural default standardization for frequency data, which tend to have
higher variances if their means are higher. Similarly, chi-square distances can be
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Exhibit 8.1:
Data set “smoking” and its
row and column profiles, as
well as their respective
average profiles
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Original cross-tabulation:

STAFF GROUP SMOKING CLASS

None Light Medium Heavy Sum

Senior managers SM 4 2 3 2 11

Junior managers JM 4 3 7 4 18

Senior employees SE 25 10 12 4 51

Junior employees JE 18 24 33 13 88

Secretaries SC 10 6 7 2 25

Sum 61 45 62 25 193

Row profiles:

SMOKING CLASS

None Light Medium Heavy

SM 0.364 0.182 0.273 0.182

JM 0.222 0.167 0.389 0.222

SE 0.490 0.196 0.235 0.078

JE 0.205 0.273 0.375 0.148

SC 0.400 0.240 0.280 0.080

Average 0.316 0.233 0.321 0.130

Column profiles:

SMOKING CLASS

None Light Medium Heavy Average

SM 0.066 0.044 0.048 0.080 0.057

JM 0.066 0.067 0.113 0.160 0.093

SE 0.410 0.222 0.194 0.160 0.264

JE 0.295 0.533 0.532 0.520 0.456

SC 0.164 0.133 0.113 0.080 0.130



defined between the column profiles, using the inverses of the elements of the av-
erage column profile.

CA has many equivalent definitions and we give just one of them here. It is—at
the same time—a generalized PCA of the row profiles and a generalized PCA of
the column profiles, and the treatment of the rows and columns is the same, just
as in LRA (log-ratio analysis) of the previous chapter. And again, both the row
and column problems rely on the same matrix decomposition, as follows:

– First divide the original data table N by its grand total n = Σi Σj
ni j: P = (1/n)N

Denote by r and c the marginal sums of P: r = P1, c = PT1 (8.1)
(these are identical to r and c defined in (7.1)).

– Calculate the matrix of standardized residuals and its SVD:

S = Dr
−½(P − rcT)Dc

−½ = UDαV
T (8.2)

– Calculate the coordinates:

Principal coordinates of rows: F = Dr
−½ UDα, of columns: G = Dc

−½ VDα (8.3) 

Standard coordinates of rows: Φ = Dr
−½ U, of columns: Γ = Dc

−½ V (8.4)

Notice how similar this algorithm is to that of log-ratio analysis, formulated in
(7.1)−(7.6) of Chapter 7; in fact, the two algorithms can be seen to be even more
similar if the S matrix in (8.2) is rewritten in the equivalent form:

[matrix for SVD in CA]       S = Dr
½(I − 1rT)(Dr

−1P Dc
−1)(I − 1cT)TDc

½ (8.5)

whereas in log-ratio analysis, from (7.2), (7.3) and (7.4):

[matrix for SVD in LRA]     S = Dr
½(I − 1rT)log(N)(I − 1cT)TDc

½ (8.6)

So the difference is that CA analyzes the contingency ratios pi j /(ri cj) in Dr
−1P Dc

−1,
whereas LRA analyses the logarithms of the data log(N). Since the double-centring
removes any additive row or column constant, log(N) in (8.6) can be replaced by
log(Dr

−1P Dc
−1) without changing the matrix for the SVD. So the only real differ-

ence between LRA and CA is the logarithmic transformation! 

−p r c

r c
ij i j

i j

Correspondence
analysis (CA)
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As in LRA, there are two biplots that result in CA: the row-principal biplot (F, Γ )
and the column-principal biplot (G, Φ). In CA, however, the points in standard
coordinates have an additional geometric interpretation: they are the extreme
unit profiles or vertices of the profile space. Consider the row profiles of the
“smoking” data, for example, and their associated biplot coordinates: F for the
rows and Γ for the columns. In a two-dimensional display (using the first two
columns of F and Γ ) the five row points are projections of the row profiles
onto the best-fitting plane. The four column points, in standard coordinates,
are the projections onto the same plane of the unit profiles [1 0 0 0], [0 1 0 0],
[0 0 1 0] and [0 0 0 1]. Since any row profile [p 1 p 2 p 3 p 4] with elements adding
up to 1 can be expressed as p1 [1 0 0 0] + p 2 [0 1 0 0] + p 3 [0 0 1 0] + p 4 [0 0 0 1],
it follows that the row profiles are at weighted averages of the column points,
the weights being the profile elements. It is this weighted average (or cen-
troid) property that makes CA so popular in ecological applications—if the
columns follow an ecological gradient (for example, rainfall in a botanical
study) then the weighted averages of the columns points for each row profile
would situate the row on that gradient. Because the row and column points in
this biplot lie in the same space, with the column points defining the most ex-
treme profiles possible, the resultant display is also called a map, specifically an
asymmetric map. 

Asymmetric maps

Exhibit 8.2:
Row asymmetric CA map
(i.e., row principal biplot) of
the “smoking” data, with
rows in principal
coordinates and columns in
standard coordinates. This
map is reproduced directly
from the ca package in R
—see the Computational
Appendix
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Exhibit 8.2 shows the row asymmetric map of the “smoking” data set. Because
the two sets of points co-exist in the same space, the amount of variation be-
tween the row profiles can be seen in relation to the extreme vertex profiles.
The five row profiles actually lie inside a tetrahedron in three-dimensional
space, which has vertices defined by the four column points. As explained above,
each row profile is at the weighted average of the four vertex points in this three-
dimensional space, and so also in the projected map of Exhibit 8.2. Thus secre-
taries (SE) lie to the left because they must have higher than average proportion
of non-smokers, whereas junior employees and managers (JE and JM) lie to the
right because they have higher than average levels of smokers, with junior man-
agers tending towards the high smoking group. All these deductions from the
map can be confirmed in the data of Exhibit 8.1. In fact, we can be absolutely
sure of these conclusions because 99.5% of the variance in Exhibit 8.1 is dis-
played in the map.

In (8.1)–(8.5) the algorithm is presented as a decomposition of a matrix where
rows and columns have been treated symmetrically, but the same decomposition
can also be thought of asymmetrically as an analysis of rows or an analysis of
columns, as we in fact introduced it originally in the context of Exhibit 8.1. The
matrix formulation S in (8.2) (equivalently in (8.5)) can be written either as:

S = Dr
½(Dr

−1P − 1cT)Dc
−½ (8.7)

or, in transposed form:

ST = Dc
½(Dc

−1PT − 1rT)Dr
−½ (8.8)

These two formulations show that CA can be thought of either (in (8.7)) as a
weighted PCA (see Chapter 5) of the row profiles in the rows of Dr

−1P, weighted
by the row masses in r, centred at their average profile cT, in the chi-square met-
ric defined by Dc

−1; or (in (8.8)) as a weighted PCA of the column profiles in the
rows of Dc

−1PT, weighted by the column masses in c, centred at their average pro-
file rT, in the chi-square metric defined by Dr

−1. In the former row problem, the
asymmetric map represents the row profiles in principal coordinates, with the
unit profiles representing the columns in standard coordinates; in the latter asym-
metric map, the columns profiles are in principal coordinates with the unit pro-
files representing the rows in standard coordinates.

Exactly the same principal coordinates can be obtained if CA is formulated as a
pair of MDS problems. For example, chi-square distances are calculated between
row profiles using the metric Dc

−1 and with row points weighted by the row mass-
es in r. Then by applying the classical MDS algorithm, with weights, in (5.11) and

Connection with PCA
and MDS
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(5.12), the principal row coordinates are recovered exactly. A symmetric result
holds for the column profiles.

There are several ways to explain CA as a regression biplot, as described in Chap-
ter 2—we explain it here in terms of definition (8.7), the weighted PCA of the
row profiles, weighted by the row masses in the chi-square metric based on Dc

−1

(in other words, the asymmetric map of the row profiles). The j-th column of the
row profile matrix has elements p 1 j /r1, p 2 j /r2, ···, p I j /rI . Centring is with respect
to the average profile element cj and the chi-square standardization implies di-
viding the centred profile by the square root of the corresponding average pro-
file element, c j

½. An appropriate regression is then when these standardized values
((p i j /ri ) − cj)/c j

½ (i = 1, …, I ) constitute the response variable and the standard
row coordinates on the first two dimensions, say, form the explanatory variables,
then applying weighted least-squares fitting with weights equal to the row masses.
The solution gives a constant equal to 0 and coefficients equal to c j

½ times the
principal coordinates of the j-th column (this result is illustrated in the Compu-
tational Appendix). This result implies that, if the regression is performed on the
principal row coordinates rather than the standard ones, then the coefficients in
the solution will be exactly the coordinates of the columns in the contribution bi-
plot (see later in this chapter). 

The total variance in CA has a close connection with the chi-square statistic χ 2 of-
ten calculated on cross-tabulations as a measure of statistical association between
rows and columns. The total variance of the S matrix decomposed in (8.2) (equiv-
alently, (8.5), (8.7) or (8.8)) is: 

(8.9) 

In CA terminology this quantity is called the total inertia of the data matrix, or sim-
ply the inertia. It is easily shown that multiplying the inertia by the grand total n
of the matrix gives the chi-square statistic: χ 2 = n × inertia. As explained in gener-
al in Exhibit 6.4, there is a decomposition of total variance across points and across
principal axes, leading to two ways of defining contributions for the rows as well as
for the columns. First, contributions of each profile point to the inertia of each
axis (column proportions in Exhibit 6.4) are used to interpret each axis—in the ca
package in R, these are denoted by the acronym CTR and expressed as permills
(see Computational Appendix). Second, contributions of the axes to the inertia of
each point (row proportions in Exhibit 6.4) are squared angle cosines between the
axes and the points, interpreted as squared correlations or as proportions of iner-
tia explained at the point level rather than for all points together—these are de-
noted by the acronym COR in the ca package and also multiplied by 1000.

Connection with 
regression biplots 

Inertia and inertia 
decomposition
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This data set consists of 13 columns, the sites at which samples have been taken
on the sea bed in the North Sea near an oilfield to study the effect of oil explo-
ration on marine life. In each sample the benthic (“sea bed”) species have been
identified and counted, leading to an ecological abundance table where the
large number of variables (the species) form the rows and the smaller number
of samples the columns: in this case, 92 rows (species) by 13 columns (sites).
Two of the sites, labelled R40 and R42, are reference stations far from the oil-
field and regarded as an unpolluted environment. CA is regularly applied to
such abundance tables to visualize the sites in relation to their species composi-
tion (the “column problem”, the way the matrix is organized here) or to visual-
ize the species’ distribution across sites (the “row problem”). Exhibit 8.3 shows
the column principal asymmetric map, where sites in principal coordinates are
at weighted averages of species points in standard coordinates. The abbreviated
species names are shown only if they contribute more than 1% to the two-di-
mensional map—referring to Exhibit 6.4, this percentage is calculated as
100(wi fi 1

2 + wi fi 2
2)/(λ1 + λ2). Of the 92 species, only 10 contribute more than 1%

each, totalling 85% of the two-dimensional solution, while the remaining 82 col-
lectively contribute only 15%. 

Data set “benthos”

Exhibit 8.3:
Column principal CA biplot

of the “benthos” data, with
columns (sites) in principal

coordinates and rows
(species) in standard

coordinates. The 10 species
with abbreviated labels

each make a contribution of
more than 1% to the

solution, the others are
indicated by dots. Total

inertia is 0.783, with 57.5%
explained in the biplot
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The points that contribute highly to a CA map such as Exhibit 8.3 are generally
the high-frequency points, while the low-frequency points contribute very little.
The low frequency points, however, often have unusual profiles and lie on the pe-
riphery of the map, giving an impression of high importance—for example, in
the “benthos” application a very rare species, occurring in just two or three sites,
will have a profile at the outer reaches of the profile space. If we are interested
only in the direction vectors for the species in the biplot, then this is an excellent
situation to use the contribution biplot (see the end of Chapter 6). Rather than
use the standard coordinates to represent the species, as in Exhibit 8.3, these co-
ordinates are multiplied by the square roots of the corresponding species masses,
causing rare species to be pulled towards the centre, as shown in Exhibit 8.4.
The species vectors now show which ones are important to interpret, because
their lengths now reflect the contributions of the species to the solution. Exhibit
8.4 shows which are the important species that separate out the unpolluted sites
R40 and R42 to the right, while species Chaetesona setosa is generally found at pol-
luted sites, particularly S15 which is close to the oilfield. There is a very high
abundance of Myriochele oculata at site S24 which is not related to the pollution

Contribution CA biplot

Exhibit 8.4:
Contribution CA biplot of the
“benthos” data, with sites
in principal coordinates and
species in standard
coordinates multiplied by
the square roots of their
masses. The position of
each species on each axis is
now directly related to its
contribution to that axis.
The 10 highly contributing
species of Exhibit 8.3
(labelled) now stand out in
the biplot and all the others
collapse to the centre. In
this graphic the size of the
triangle at each species
point, rather than the label,
is related to the species
total abundance level 
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gradient—this gradient emerges as a curve from the bottom (sites S15, S9 and
S14) to the right (the reference stations). 

As described earlier in this chapter, the coordinates of the species in this contri-
bution biplot turn out to be the regression coefficients when the species are re-
gressed on the two CA dimensions, where (i) the species “response” is defined by
its elements in the matrix of site profiles, centred and normalized in a chi-square
fashion, (ii) the “predictors” are the principal coordinates of the sites, and (iii)
the regression is fitted by weighted least squares, using the site masses as weights.
This is an additional interpretation of the contribution biplot in the case of CA,
giving even more meaning to the positions of the species points in Exhibit 8.4.

1. Correspondence analysis is applicable to a table of nonnegative data, the pri-
mary example being a cross-tabulation of two categorical variables, that is a
contingency table.

2. The method can be thought of as an analysis of row or column profiles of the data
matrix—these are the rows or columns expressed relative to their marginal totals.

3. Each profile receives a weight equal to the relative marginal total, called a mass.

4. Distances between profiles are defined by the chi-square metric. This is essen-
tially a type of standardization of the profile values similar to that used in PCA,
but using the average profile element as an estimate of variance rather than
the variance itself.

5. The total variance, called inertia, in the data is numerically equal to the chi-
square statistic for the table divided by the table’s grand total.

6. Two types of asymmetric maps, both of which are biplots, are possible, de-
pending on whether row or column profiles (and thus their interpoint chi-
square distances) are visualized. Both are form biplots.

7. The contribution biplot can be particularly useful in CA applications, espe-
cially when there are quite different levels in rows or in columns (i.e., large dif-
ferences in the masses). This biplot pulls in the points represented in standard
coordinates by the square roots of their respective masses. For each such point,
the squares of its rescaled coordinates are equal to the part contributions that
the point makes to the respective principal axes.

8. In the contribution biplot, suppose that rows are in principal coordinates (i.e.,
row profiles are being visualized) and columns in “shrunken” standard coor-
dinates. Then these latter coordinates for each column are also regression co-
efficients when the standardized values for that column in the row profile ma-
trix are regressed on the principal coordinates of the rows, using weighted
least squares with weights equal to the row masses.

SUMMARY:
Correspondence Analysis

Biplots
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