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CHAPTER

Multiple Correspondence Analysis Biplots II

Multiple correspondence analysis (MCA) is the CA of a special type of concatenated
table, where a set of variables is cross-tabulated with itself. Therefore we can say
that, whereas in Chapter 9 the concatenation was made between two sets of dif-
ferent variables, in this chapter the concatenation is made of variables within one
single set. This concatenated matrix has identical rows and columns and is thus
square symmetric. It includes cross-tabulations between each variable and itself,
which are diagonal matrices of perfect association. These perfect associations
are impossible to represent in a low-dimensional display, so any biplot as de-
scribed in Chapter 9 of this particular concatenated matrix would be degraded
as far as overall quality of data representation is concerned. This problem is
avoided with a simple adjustment of the solution (or by using an alternative ap-
proach called joint correspondence analysis). In this chapter we show some pos-
sibilities for biplots in this MCA context, where the rows and columns are iden-
tical, and also how individual case points, or group averages of cases, can be
displayed.
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Using the same “women” data set for Spain as in Chapter 9, Exhibit 10.1 shows
part of the concatenated table of all the cross-tabulations of the questions with
one another (here, for the moment, we do not consider the demographic vari-
ables). This is a square symmetric block matrix, since the cross-tabulation of vari-
able q with variable s is the transpose of that of variable s with variable q. This ma-
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trix is called a Burt matrix, after the psychometrician Cyril Burt, who first consid-
ered this type of data structure. 

Like the concatenated table of Chapter 9, this one has the property that each
subtable has a sum equal to the sample size, and the row margins are all the
same across the variables in each row block and the column margins are all the
same across the variables in each column block. Hence, the inertia of the Burt
matrix of, in general, Q variables is the average of the inertias in the Q 2 subta-
bles. In this eight-variable example there are eight cross-tabulations down the
diagonal, each variable cross-tabulated with itself, which are diagonal matrices
of perfect association, each having an inertia of 1 less than the number of cate-
gories, i.e. 4 in this example (a 5 × 5 diagonal matrix has four principal inertias,
each equal to 1). These high values inflate the total inertia considerably, so
we do not include them in the computation of the total inertia, preferring
to define the total inertia to be explained as the average of all the other (“off-
diagonal”) subtables, of which there are Q 2 − Q = Q(Q − 1). This is called the
adjusted inertia in MCA. In fact, since the matrix is symmetric we can compute
the adjusted inertia as the average of the upper or lower triangle of subtables,
of which there are ½Q(Q − 1). If the usual total inertia of the complete Burt
matrix, inertia(B), is available, the constant amounts due to the problematic
diagonal matrices can be simply subtracted, and the adjusted inertia can be
shown to be:

Exhibit 10.1:
Part of the Burt matrix of
the eight variables of the

“women” data set, showing
the first three variables

cross-tabulated with one
another, including the cross-

tabulations of perfect
association between each

variable and itself down the
diagonal blocks
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A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5

a1 397 0 0 0 0 19 113 42 132 91 37 91 45 154 70 ···
a2 0 932 0 0 0 18 362 126 405 21 21 405 128 359 19 ···
a3 0 0 91 0 0 2 44 22 21 2 8 44 25 13 1 ···
a4 0 0 0 598 0 40 411 42 101 4 48 422 36 88 4 ···
a5 0 0 0 0 89 45 26 5 6 7 51 26 3 6 3 ···
b1 19 18 2 40 45 124 0 0 0 0 80 34 4 3 3 ···
b2 113 362 44 411 26 0 956 0 0 0 52 673 65 154 12 ···
b3 42 126 22 42 5 0 0 237 0 0 12 82 82 59 2 ···
b4 132 405 21 101 6 0 0 0 665 0 8 182 79 378 18 ···
b5 91 21 2 4 7 0 0 0 0 125 13 17 7 26 62 ···
c1 37 21 8 48 51 80 52 12 8 13 165 0 0 0 0 ···
c2 91 405 44 422 26 34 673 82 182 17 0 988 0 0 0 ···
c3 45 128 25 36 3 4 65 82 79 7 0 0 237 0 0 ···
c4 154 359 13 88 6 3 154 59 378 26 0 0 0 620 0 ···
c5 70 19 1 4 3 3 12 2 18 62 0 0 0 0 97 ···

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...



(10.1)

where Q = number of variables, J = total number of categories in all the variables.
For example, in this example the total inertia of B is equal to 0.6776, but when
we make the calculation removing the contributions of the eight diagonal matri-
ces it reduces to (remembering that we combined two categories of H, so there
are 39 categories in total):

(If one computes the individual inertias in the ½ × 8 × 7 = 28 cross-tabulations be-
tween pairs of variables and averages them, the result is identical.)

In Exhibit 10.2, on the left, the first five records of the original respondent-level
data are shown, first the response categories to the eight questions, then the de-
mographic groups for gender, marital status, education, age and the gender-age
combination. On the right we see an alternative way of coding the data, where the
columns are dummy variables, one column for each category of response, and cod-
ed with a 1 to indicate the response category, otherwise 0. The matrices on the
right are called indicator matrices. The indicator matrices can be used to construct
concatenated tables: for example, if we denote the 39-column indicator matrix
for the eight questions A to H as Z, then the Burt matrix B is simply:

B = Z TZ (10.2) 

The total inertia of an indicator matrix of Q variables with a total of J categories
can be shown to be equal to a constant which depends only on J and Q :

Indicator matrix

Exhibit 10.2:
Data for first five
respondents (out of 2107)
in the “women” data set,
showing on the right the
corresponding indicator
coding of some of the
variables
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total inertia of indicator matrix = (J − Q)/Q (10.3)

In the present example, this inertia would be equal to (39 − 8)/8 = 3.875.

All the above results are relevant to understanding biplots for multiple corre-
spondence analysis (MCA). MCA is classically defined as the CA algorithm ap-
plied to either the indicator matrix Z or the Burt matrix B. It is well-known that
the two alternatives lead to exactly the same standard coordinates for the variable
categories, while the singular values in the CA of B are the squares of those in the
CA of Z. What interests us here is how to biplot the results meaningfully so that
data are successfully recovered in the graphical representation. For example, con-
sider the asymmetric map of the indicator matrix, with rows in principal coordi-
nates and columns in principal coordinates, shown in Exhibit 10.3.

In contrast to the biplots of Chapter 9, which showed relationships between the
question responses and the demographic categories, this biplot shows the rela-
tionships amongst the response categories themselves. All the extreme categories
(the 1’s and 5’s) are on the right and all the moderate categories (2’s and 4’s) and

Indicator matrix biplot

Exhibit 10.3:
Asymmetric map/biplot of
the 2107 × 39 indicator

matrix of the eight questions
of the “women” data set.

Each respondent point is at
the average of the

corresponding eight
response categories —an

example is shown of a
respondent linked to her

responses A1, B2, C1,
D1, E1, F5, G1, H1
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middles (3’s) are on the left. The main feature of the data is thus the opposition
between respondents giving extreme opinions on the issue of working women
and those with moderate attitudes. The conservative-liberal dimension in the re-
sponses is reflected in the vertical spread of the response categories, with conser-
vative views at the bottom and liberal views at the top, on both extreme and mod-
erate sides of the map.

Each row (respondent) is displayed as a green dot, and because each row of the
indicator matrix consists of 0s apart from eight 1s in the response category po-
sitions, its profile consists of 0s except for the value 1/8 in those positions. The
barycentric (or weighted average) property in the asymmetric map implies that
each row point is at the ordinary average position of its eight response cate-
gories, for example the point shown in Exhibit 10.3, which is situated towards
the extreme conservative region of the map. It is clear that in such a biplot
there is no question of calibrating axes or trying to recover the 0/1 data—this
is borne out by the fact that percentages of inertia are very low (10.6% and
8.2% respectively on the axes), which is typical if the indicator matrix is ana-
lyzed.

While it is interesting to see the whole cloud of respondent points, the biplot of
Exhibit 10.3 can be made more meaningful by representing subgroups of points,
for example the demographic groups such as male/female, or high/low educa-
tion. This is explained below using the supplementary point idea, but basically
the idea is to remove the individual case points and rather display average points
for individuals in specified demographic groups.

A biplot based on the Burt matrix is similar to the one we had for concatenat-
ed tables in Chapter 9, except for two major differences: the row and column
variables are the same, and the tables of perfect association down the diagonal
of the Burt matrix need to be avoided in some way. Our objective is to achieve
a biplot that reconstructs the profiles of all tables apart from those in the diag-
onal blocks, and we have already proposed an adjusted total inertia that omits
these cross-tabulations of perfect association. A simple adjustment of the singu-
lar values turns out to be just what is necessary so that the MCA solution best fits
the off-diagonal tables. If λ k denotes the k-th principal inertia of B, then only
those axes for which are larger than 1/Q are retained (notice that the ’s
are exactly the principal inertias of the CA of the indicator matrix). The adjust-
ment is as follows:

(10.4)

λk λk

Adjusted inertias
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The values in (10.4) effectively replace the singular values in the MCA and their
squares are the adjusted principal inertias, which can be expressed relative to the
adjusted total inertia of (10.1) to obtain percentages of inertia.6

We now have all the results necessary to define a biplot of the Burt matrix. First,
we perform the MCA of the complete Burt matrix, giving us the standard coordi-
nates identical to those used to plot the categories in Exhibit 10.3. The number
of principal inertias that satisfy > 1/8 is equal to 9. Applying the adjustment
(10.4), the first two are equal to:

These two values replace the singular values in the MCA and then the asymmet-
ric biplot in Exhibit 10.4 can be drawn, with the rows, say, in principal coordinates
(standard coordinates multiplied by the above adjusted singular values) and the
columns in standard coordinates. Their squared values quantify the amount of in-
ertia accounted for by each axis: 0.34222 = 0.1171 and 0.23262 = 0.0541, and rela-
tive to the adjusted total inertia of 0.2208 calculated previously, they explain
53.0% and 24.5% respectively.

One might ask what the benefit is of representing the categories twice, since the
row principal coordinates are at the same relative positions along the principal
axes as the column standard coordinates. The answer is that, like in any biplot, a
biplot axis can be drawn through the point C5, for example, in standard coordi-
nates, and then the profile values of all other categories on C5—except for the
categories of the variable C itself—can be lined up by their projections onto that
axis. So the fact that categories C5 and B5 are close means that all other response
categories have similar profile values on these two categories. A possibly more in-
teresting biplot of the two sets of identically labelled points is provided by the con-
tribution biplot—since we are only interested in the directions of the biplot axes,
we can change the lengths of the set of points in standard coordinates to reflect
the contributions to the principal axes.

Since the row configuration in principal coordinates gives us the essential infor-
mation for interpreting inter-category associations, we can use the column con-

λk λk

Burt matrix biplot

MCA contribution biplot
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6. The set of dimensions for which > 1/Q will usually account for less than 100% of the inertia in the off-
diagonal cross-tabulations. To account for 100% of the inertia, another form of MCA called joint correspon-
dence analysis needs to be used (not treated in this book).
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figuration to show which variables and which categories are contributing the most
to the solution. The column points in standard coordinates are thus multiplied
by the square roots of their masses to obtain the standard MCA biplot of Exhibit
10.5. Notice that the contribution coordinates of the middle categories (3’s) are
close to the centre, so these categories play a minor role in this biplot. However,
they all contribute strongly as a group to the third dimension (not shown here).
The separation of the middle response categories is a common phenomenon in
survey data and is the theme of the case study in Chapter 14.

As we saw in Exhibit 10.3, every respondent (a row of the indicator matrix) has a
position in the biplot depending on that respondent’s particular choice of re-
sponses. Groups of respondents can be displayed by their mean positions and, op-
tionally, some type of confidence region for each mean. Geometrically, this is sim-
ply finding the average of all respondents in the lowest education group, for
example, in the display and this gives a point e0, or finding the average of all fe-
males in the age group up to 25 years, and this gives a point fa1. Analytically, this
is achieved by adding an extra row to the data matrix which accumulates all the
frequencies for males across the variables, or all females in the first age group, in

Exhibit 10.4:
Asymmetric map/biplot of
the Burt matrix: columns in
standard coordinates and
rows in principal
coordinates using adjusted
principal inertias.
Percentages of inertia on
the two axes are 53.0% and
24.5% respectively

Supplementary points
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other words, exactly the rows of the concatenated matrix in Exhibit 9.1. The pro-
files of these rows define points in the MCA space which are the means of the cor-
responding demographic group.

Exhibit 10.6 shows the demographic group means added to the display of Exhib-
it 10.5 (categories shown in contribution coordinates only). 

Because the upper right represents the most liberal attitude towards working
women and the lower right the most conservative (and lower left the more mod-
erate conservative attitude), one can see that the oldest male group and lowest ed-
ucation group are the most conservative while at the top end it is the two highest
education groups and the younger female groups that are the most liberal. Not
only have the combinations of gender and age been added but also the points
representing all males (m) and all females (f) and each age been group (a1 to
a6). A similar result to that observed in Exhibit 9.6 can be seen at the top where
the young females (e.g., fa1) tend to be strongly liberal, whereas the correspon-
ding male group (ma1) tends to the more moderate liberal side (upper left). The
point a1 representing the age group as a whole is between these two points. At

Exhibit 10.5:
MCA contribution biplot. The

row points (principal
coordinates, in green—
same as in Exhibit 10.4)

show chi-square distances
between the categories,
while the column points

(contribution coordinates, in
brown) serve as directions

for biplot axes as well as
quantifying the

contributions of the
categories to each

dimension
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bottom left we have a6 lying between fa6 and ma6 (but closer to fa6 since there
are more females in this age group) but here the difference is simply that males
are more conservative than females and there is not so much the strong versus
moderate attitude observed in the youngest groups. In fact, there is no specific
demographic group tending to the extreme conservative attitudes at bottom
right.

In summary, Exhibit 10.6 is displaying many aspects of the original 2107 × 12 data
matrix (8 questions and 4 demographic variables (see Chapter 9). In the first
instance it shows the principal axes of the question categories (green points in
Exhibit 10.5) in such a way as to maximize the inertia accounted for in all the pair-
wise relationships between the questions. Second, it shows the question cate-
gories (brown points) with lengths related to their contributions to the solution
axes and with directions that define biplot axes, onto which the green points (in
Exhibit 10.5) can be projected (excluding the green points for the same question,
because projecting a question onto itself has been purposely avoided in finding
the solution). Third, demographic groups are displayed as supplementary mean
points of the respondents in each respective group.

Exhibit 10.6:
MCA contribution biplot,
showing variables in their
contribution positions and
supplementary points added
for the demographic groups
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The MCA in Exhibit 10.6 is primarily focused on displaying the associations
among the eight questions, and secondarily on showing how the demographic
groups relate to these dimensions. Exhibit 9.6, on the other hand, is focused on
the associations between the demographic variables and the questions. From the
biplot point of view the difference can be explained as follows. In Exhibit 10.6 if
a biplot axis is drawn through G5, for example, then the projections of all the
question categories a1 to a5, b1 to b5, etc. (but not g1 to g5), will be approxi-
mating the profile values of these categories on G5—the overall quality of display
of all these profiles with respect to the biplot axes is 77.5%, the inertia explained
by the first two axes. The demographic categories can also be projected onto di-
rections such as G5, but their displayed profile values have not been specifically
optimized—the overall quality of display of these supplementary profiles is only
58.1% in Exhibit 10.6. In Exhibit 9.6, on the other hand, the projections of the
demographic categories onto the biplot axes defined by the response categories
(for example, onto G5), were optimal and there the overall quality of display was
86.5%. 

1. One of the ways of defining and thinking about MCA is as the CA of the con-
catenated table of cross-tabulations of a set of categorical variables with them-
selves. This square symmetric block matrix is called the Burt matrix. 

2. The Burt matrix includes down its diagonal blocks the cross-tabulations of
each variable with itself, and these tables inflate the total inertia of the prob-
lem, leading to low percentages of inertia explained on the principal axes if
the Burt matrix is displayed.

3. A simple adjustment of the principal inertias and the total inertia optimizes
the solution to the off-diagonal tables that cross-tabulate distinct pairs of vari-
ables.

4. Because the rows and columns of the Burt matrix are identical, the contribu-
tion biplot is particularly useful: one of the sets, for example the rows, shows
the category points in principal coordinates and so displays inter-profile dis-
tances, while the other set can display the categories both as biplot axes and
with lengths related to their contributions to the solution.

5. In all MCA biplots the respondent points can also be displayed, but it is usual-
ly more interesting to show various average positions of groups of respondents
in terms of their demographic characteristics. These are added as supplemen-
tary points.

SUMMARY:
Multiple Correspondence

Analysis Biplots II
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