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CHAPTER

Discriminant Analysis Biplots

Discriminant analysis is characterized by a classification of the cases in a data set
into groups, and the study of these groups in terms of the variables observed on
the cases. The ultimate aim is to discover which variables are important in distin-
guishing the groups, or to develop a classification rule for predicting the groups.
Up to now biplots have been displaying, as accurately as possible, data on indi-
vidual case points. One exception, which is a type of discriminant analysis, was in
Chapter 9 where the biplot was designed to show differences between demo-
graphic groups in the data rather than show individual differences. This biplot of
group differences did not take into account correlations between the variables,
while other approaches—such as Fisher’s linear discriminant analysis—use a dis-
tance function between cases which does take into account correlations. In this
chapter the geometry of these two approaches is explained and biplots are devel-
oped to display the cases and their group averages, along with the variables, in a
discriminant space that shows the group differences optimally. 
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A common feature of a cases-by-variables data matrix is the classification of the
cases (or the variables) into groups. For example, in the case of the Arctic charr
fish in the “morphology” data set, each fish is classified as male or female, and
also whether it was caught near the shore or in the open waters. Are these groups
of fish different in terms of their morphology? In the “women” data set we dis-
played differences between individual respondents in Exhibit 10.3, whereas in Ex-
hibit 9.3 group differences were displayed. In all of these methods where individ-
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ual-level differences are displayed, it is also possible to display aggregate-level dif-
ferences. Analyzing group differences based on multivariate data is called dis-
criminant analysis, or DA. The basic idea underlying DA is the analysis of group
means, or centroids, rather than the individual data. In other words, what we have
been doing up to now in analyzing N cases, say, can be thought of as a DA of N
groups, each consisting of 1 case, whereas now we consider the DA of G groups,
of size N1, …, NG, where N1 + ··· + NG = N. Although not so common, the same idea
can be applied to the variables: instead of analyzing all the morphometric vari-
ables individually in the “morphology” data set, for example, the variables can be
amalgamated by summation or averaging into predetermined groups.

When cases are grouped, there is a decomposition of the total variance (or iner-
tia in CA and LRA when points have different weights) into two parts: variance be-
tween groups, which quantifies how different the groups are, and variance within
groups, which quantifies how internally heterogeneous the groups are:

Total variance = Between-group variance + Within-group variance (11.1)

The greater the between-group variance, the more homogeneous the groups
must be—in the extreme case where groups consist of single cases, between-
group variance is the total variance and within-group variance is zero. At the oth-
er extreme where there is no group separation, between-group variance is zero
and the within-group variance is the total variance. The decomposition in (11.1)
is the basis of analysis of variance for one variable, whereas in our context that
variance is measured in multidimensional space, using the distance measure of
the particular method, be it PCA, CA/MCA or LRA.

Between- and 
within-group

variance/inertia

Exhibit 11.1:
The open circles represent

the centroids of three groups
(coloured in green, black and

brown). Points have a
distance di to the overall

centroid, represented by the
bold open circle. The

distance of a member of
group g to its group centroid

is dig , and the distance
from the centroid of group g

to the overall centroid is dg .
Points have masses mi and

the aggregated mass in group
g is mg , which is assigned to
the respective group centroid

BIPLOTS IN PRACTICE

110

R p

•

• •
• •

•
•

• •

•

•

•

•

• •

•

••

•

•
•

•• i

dg

dig

= g m g d g
2      +   g( i mi dig

2 )∑i mi di
2

•

•

d

xi (one of the points, with mass mi)

xg (centroid of g-th group, with mass mg)

(p-dimensional space)

Total inertia = Between-group + Within-group

                            inertia                inertia

∑ ∑ ∑

•



In PCA (principal component analysis) each case point typically has weight 1/N
and the weights assigned to the group average points x− 1, x− 2,..., x− G are then N1/N,
N2/N, …, NG/N. In LRA and CA/MCA the case points can have varying weights,
ri, in which case the group means are weighted by the accumulated weights of
their respective cases. Exhibit 11.1 illustrates the decomposition of variance/in-
ertia in a schematic way—here the groups are shown almost perfectly separated,
but in practice there is a high degree of overlap and the group averages, or cen-
troids, separate out much less. For example, in the “morphology” data set of
Chapter 7, where LRA was used to visualize the 75 Arctic charr fish, there were four
groups of fish defined by the combinations of sex (male/female, abbreviated as
m/f) and habitat (littoral/pelagic, abbreviated as L/P)—these were labelled in Ex-
hibit 7.3 as fL, mL, fP and mP. The total inertia in the full multidimensional space
of the LRA was equal to 0.001961. The decomposition of inertia (11.1) with re-
spect to the four sex/habitat groups turns out to be:

0.001961 = 0.000128 + 0.001833

The between-group inertia (0.000128) is only 6.5% of the total. In the Computa-
tional Appendix a permutation test is performed, showing that the between-
group differences, although small, are statistically significant (p = 0.015) and worth
investigating. A small between-group variance or inertia does not mean that there
is no meaningful separation of the groups—groups can be separable and still
have a high percentage of within-group variance. In Exhibit 7.3, however, the ob-
jective of the biplot was to separate the individual fish optimally in the two-di-
mensional view, not the groups of fish—separating the groups optimally in a low-
dimensional display is the job of DA.

The log-ratio discriminant analysis (LRA-DA) biplot of the four fish groups is-
shown in Exhibit 11.2. This is achieved by performing a regular LRA on the 4 × 26
matrix of group centroids, weighted by their respective aggregated masses (re-
member that in LRA, as in CA, the mass of a point is proportional to its marginal
sum, so that the mass ri of each fish is proportional to the total of its morpho-
metric values). The dimensionality of the four centroids is three, so that dimen -
sion reduction to two dimensions means sacrificing only one dimension. The bi-
plot shows that the main difference (along the horizontal axis) is that between
the two littoral groups on the left and the two pelagic groups on the right. The
second axis separates the females from the males, especially the female and
male littorals.

To find out which ratios might be associated with these separations, the log-ratio
of Bc relative to Jw is the longest horizontal link corresponding to the left-to-right
littoral-pelagic contrast in Exhibit 11.2. Performing a two-group t-test between the

Example: LRA-DA biplot
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pelagic and littoral groups on this log-ratio gives a difference on the log-scale of
0.083, which translates to a 8.7% increased ratio of Bc/Jw in pelagics compared
to littorals, significant at p = 0.006. As for the difference between females and
males on the vertical axis, the biplot suggests the log of Faw/Fdl to be a possible
candidate. Indeed, the t-test shows a difference between females and males of
0.073 on the log-scale, which is a 7.6% increase in the Faw/Fdl ratio in females
compared to males, with p < 0.0001.

Exhibit 7.3 was already an example of a DA between groups in a CA context, al-
though there we showed the differences between several groupings of the cases
simultaneously. To focus on only one set of groups, let us consider visualize and
quantify the differences in attitudes between the marital status groups m1 to m5:
respectively, “married”, “widowed”, “divorced”, “separated” and “single”. What we
call a CA-DA is just a CA of the concatenated tables with the 5 rows being the mar-
ital groups, and 39 columns the categories of the 8 variables (remember that H4
and H5 were combined to give one column H4,5). Exhibit 11.3 shows the CA con-
tribution biplot, comparable to Exhibit 9.6. Again, G2 is an important category
for the conservative end of the scale, typified by the group “widowed”. In Exhibit
9.6 we saw that disagreement (category 4) to statements C, D, E and G all corre-

Exhibit 11.2:
LRA-DA biplot of the four

fish groups in the
“morphology” data set, with

fish group centroids in
principal coordinates and

variables in standard
coordinates. Because of the

very small inertia of the
centroids (0.000128), they

are shown on a different
scale. 79.9% of this inertia
of the centroids is explained

in the biplot

Example: CA-DA biplot
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lated and were associated with younger males. In Exhibit 11.3 these categories are
more spread out vertically, with C4 an important category for “single” (disagree
that family life suffers when a woman works) while E4 and G4 are important for
“divorced” (disagree that running a household is just as satisfying as a paid job,
and disagree that a man’s job is to work and a woman’s is the household).

Again, even though these between-group differences are meaningful and actual-
ly highly significant statistically (chi-square tests between marital status and each
question all have p < 0.0001), the between-group inertia relative to the total is very
small. This is because the total inertia of the original data in indicator matrix
form is a fixed value and very high—see (10.3)—equal to 3.875 in this example.
The between-group inertia could only attain this value in the extreme case that
each of the five marital status groups gave identical responses within each group.
In practice, the inertias of condensed tables like this one are very much smaller
than the indicator matrix: in this example the total inertia of the five groups is
0.03554, which is only 0.917% of the total inertia of the indicator matrix. In the
Computational Appendix we explain how to perform a permutation test to quan-
tify the statistical significance of the between-group inertia.

Exhibit 11.3:
CA-DA of marital status
groups in the “women” data
set, in terms of the 8
questions on women
working. 90.7% of the
inertia is displayed here
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In the different variants of discriminant analysis described above, no mention was
made at all of the effect of correlations between variables, which can distort the
distances between group centroids. Suppose there are two groups of bivariate
points, indicated by “x” and “°” in Exhibit 11.4, with their group means in bold-
face. The coloured ellipses in the left hand picture summarize the spread of each
group, and show that the two variables are highly correlated within each group.
The two centroids are at a certain distance apart. Now suppose that the “°” group
lay in the position indicated by the dashed ellipse—its centroid is at the same dis-
tance from the “x” centroid, but the groups overlap much more. This anomaly can
be removed by performing a transformation on the variables to de-correlate them,
shown on the right hand side. The elliptical dispersion of the points is now spher-
ical and, indeed, the “°” centroid is now much further away from the “x” centroid
compared to the alternative in the dashed circle. The transformation involved is
more than a standardization of the variables, because in the left hand picture of
Exhibit 11.4 the two variables have the same variance. Rather, what is needed is a
stretching out of the points in a direction more or less at right-angles to the axis of
dispersion of the points—this is achieved by defining what is called the Maha-
lanobis distance between the cases, named after a famous Indian statistician.

Suppose C is the within-groups covariance matrix between the variables (this is de-
fined in the next section). Then the Mahalanobis distance between two points x
and y in multivariate space is 

(11.2) 

If we omit the off-diagonal covariances in C so that C is the diagonal matrix of
variances, then (11.2) is just the regular standardization of the variables. The
presence of the off-diagonal covariances in C decorrelates the variables.

Mahalanobis distance

Exhibit 11.4:
The effect of high

correlation between
variables on the measure of
between-group distance. On

the right a transformation
has been performed to

remove the correlation—
now the distances between

points are Mahalanobis
distances
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With this distance function in the space of the cases the same analysis of the cen-
troids is performed as before—this is called linear discriminant analysis (LDA),
attributed to the statistician R.A. Fisher, so sometimes called Fisher discriminant
analysis. Given an cases × variables data matrix X (I × J ) where the cases are classi-
fied into G groups, denote by xi g the vector of observations for the i-th case in the
g-th group, with weight (mass) wig. The group masses are w1, w2, …, wG (wg = Σi

wi g)
and the centroids x− 1, x− 2,..., x− G (x− g = Σi

(wi g/wg)xi g). Then the within-groups co-
variance matrix C is the weighted average of the covariance matrices computed
for the groups separately:

(11.3)

The theory of generalized PCA and contribution biplots in Chapters 5 and 6 ap-
plies here:

– Centre the group means: Y− = X− −1w T X− = (I − 1wT)X− , where X− is the matrix
of centroids in the rows, w is the vector of group weights; since the overall cen-
troid x− T (written as a row vector) of the individual-level data in X is identical
to the centroid w TX− of the group centroids, we could also write Y− = X− −1x− T.

– Transform to Mahalanobis distance and weight by the masses before com-
puting the SVD (singular value decomposition):

S = Dw
½ Y−C–½(1/J )½ = UDηV

T (11.4) 

where C−½ is the inverse of the symmetric square root of C—this is calculated
using the eigenvalue decomposition7 of C: C = XDλ XT, hence C−½ = XDλ

−½ XT
.

– Calculate the principal coordinates of the group centroids: F = Dw
−½UDη and

the coordinates of the variables for the contribution biplot (for example):
Γ = V.

This theory is illustrated with Fisher’s famous “iris” data set, available in the R
package (see the Computational Appendix). In this case, the decomposition of
variance is:

9.119 = 8.119 + 1.000

Linear discriminant
analysis (LDA)
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7. Notice that the eigenvalue decomposition of a square symmetric matrix is the same as the singular value de-
composition when the eigenvalues are all non-negative, as is the case here for the covariance matrix C. Thus
it is possible to calculate the square roots of the eigenvalues of C.



Notice that the within-group variance is equal to 1, by construction. In this ex-
ample the variance of the centroids accounts for 89.0% of the total variance, and
the separation is excellent, as shown in Exhibit 11.5. The first principal axis of
the centroids totally dominates, accounting for 99.1% of their variance. Petal
length (PetL) and peta1 width (PetW) are seen to be the most important vari-
ables on this axis.

Notice that the individual points have been added to this LDA biplot, as supple-
mentary points. To derive the coordinates of the individuals, notice from the al-
gorithm above that the principal coordinates F = Dw

−½ UDη of the group centroids
are equivalently obtained by the transformation of the column variable points V:
Y−C–½(1/J )½V. The coordinates Fcase of individual case points are obtained in a
similar way, using the centred matrix Y for the original individual-level data: 

Fcase = YC–½(1/J )½V (11.5)

In a similar fashion all the individual cases could have been added to the DA bi-
plots of Exhibits 11.2 and 11.3, using the appropriate relationship in each analy-
sis between the row and column points—this relationship is often referred to as
the transition formula between rows and columns.

1. Discriminant analysis is the analysis of group means, or centroids, of a set of
multivariate points classified into pre-specified groups.

2. The centroids have masses (weights) equal to the sum of the masses of their
members.

3. There is a decomposition of total variance/inertia of the set of points into that
of the centroids, the between-group variance/inertia, plus the weighted aver-
age variance/inertia within the groups, the within-group variance/inertia. (In-
ertia is simply the alternative term for variance when the points have different
weights; or conversely, variance is the special case of inertia when the weights
of all points are equal). 

Exhibit 11.5:
LDA contribution biplot of

Fisher “iris” data. 99.1% of
the variance of the

centroids is explained by the
first axis, on which PetL

(petal length) is the highest
contributor

SUMMARY:
Discriminant Analysis

Biplots

BIPLOTS IN PRACTICE

116

–4 –2 0 2 4

–
1
.0

–
0
.5

0
.0

0
.5

1
.0

·
···

·
·

··
· ·

·
·
··

·
·

·
···
·
· ··

·
·
· ··
··
·

·
·

· ·
··

·
·
·

·

·

··

·
·

·
·

···
·

·
··

·

·
··

·

·

·

·
···

·· ·

·

·
· ·

··
·

· ·
·· ·

··
·

·
·

·

·
··
·

·
·

· ··· ··

·

··
·

·
· ···

·
·

·
·
·

· ·

·

·

·
·

·
·

·
·

·
· ···
··

·
·

·
·

·

·

· ··
· ·

·

·
·

·

·
·

·

· setosa

versicolor

virginica
SepL

SepW

PetL

PetW



4. The dimension reduction of the centroids follows the same algorithm as the
corresponding PCA, LRA or CA/MCA method.

5. Linear discriminant analysis (LDA) is also a dimension-reduction method on a
set of centroids, but uses the Mahalanobis distance based on the within-groups
covariance matrix to decorrelate the data.

6. In all these variations of DA the contribution biplot displays the centroids in
an optimal map of their positions, along with the variables so that the most im-
portant (i.e., most discriminating) variables are quickly identified.
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