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CHAPTER

Constrained Biplots and Triplots

The pervading theme of this book has been the visualization of the maximum
amount of information in a rectangular data matrix through a graphical display
of the rows and columns, called the biplot. Often the rows are cases, displayed as
points, and the columns are variables, displayed as vectors, and thanks to the
scalar product property the projections of row points onto axes defined by the
column vectors lead to approximations of the original data. Up to now no condi-
tion has been imposed on the solution apart from certain normalization condi-
tions on the coordinates because of the indeterminacy of the matrix decomposi-
tion. In this final chapter we look at several ways of constraining the biplot display
to have some additional condition on its solution. Imposing restrictions on a bi-
plot necessarily makes it sub-optimal in representing the original data matrix, but
in many situations such constraints add value to the interpretation of the data in
relation to external information available about the rows or the columns.
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The idea of a constrained biplot can be illustrated using the “morphology” data
set, the measurements of the 75 Arctic charr fish, and the log-ratio (LRA) biplot of
Exhibit 7.3. The LRA biplot explained 37.5% of the variance (20.9% on the first
axis, 16.6% on the second) of the 75 × 26 data matrix, which was logarithmically
transformed and double-centred, called the log-ratio transformation. The body
weight of each fish was also available, and it would be interesting to see if the body
weight is related to the solution. This is achieved using the regression biplot of
Chapter 2, where continuous variables can be added to an existing plot using
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their regression coefficients on the dimensions of the map. A regression analysis
is performed, of body weight as response and the fish coordinates on the two axes
as explanatory variables, and the two standardized regression coefficients are
used to draw this supplementary variable’s direction. The coefficients turn out to
be 0.116 and 0.203, with an R 2 of 0.055, and we could add a short vector to Ex-
hibit 7.3 pointing towards the upper right (0.116 on the first axis, 0.203 on the
second) to show the relationship of this additional variable to the biplot. An ex-
plained variance of 5.5% of the variable body weight, however, shows that this
variable has little relationship with the biplot. The idea of adding the body weight
variable was to see if there was any relationship between this variable and the
shape of the fish (remember that it is the shape that the biplot is visualizing, not
the size, thanks to the log-ratio transformation). For example, perhaps fish that
are generally wider than they are longer may be heavier (this is frequently the
case for humans!).

A more direct way of investigating this possible relationship is to constrain the
first dimension of the biplot to be linearly related to body weight, so that body
weight will coincide exactly with the first axis—that is, it will be 100% explained
by the first axis—while the second axis will be the optimal axis not related to
body weight but still trying to visualize the morphometric data as accurately as
possible. As a spin-off we obtain a measure of exactly how much variance in the
(log-ratio transformed) morphometric data is explained by body weight. Before
we look at how the solution is obtained technically, let us look at the result of
imposing the constraint, shown in Exhibit 12.1—body weight is now perfectly
correlated with the first axis, pointing to the right. Body weight explains 4.0%
of the variance of the morphometric variables (in the Computational Appendix
we shall show that this percentage is highly significant statistically, with a p-val-
ue of 0.001), while the second axis (which is the first axis of the unconstrained
space) explains 20.7%. A log-ratio link that is lying in this horizontal direction
and which is long suggests the ratio Bcw/Ed, caudal body width relative to eye
diameter—one might say the fat fish are heavy-tailed and beady eyed! Plotting
body weight against this ratio does show a significant correlation of 0.489, and
the slope of the relationship estimates a 1.84% increase in the ratio Bcw/Ed for
every 10g increase in body weight (since exp(0.00182 × 10) = 1.0184). The vari-
able Bd, body width at dorsal fins, is also in the same direction as Bcw, again sup-
porting the not surprising result that heavier fish are wider. In a separate analy-
sis a much weaker relationship was found with the morphological variables and
body length.

Suppose that we want to constrain the biplot to be related to an external cate-
gorical variable; for example, the four-category sex-habitat variable for the fish
data again.

Constraining by a
categorical variable
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This turns out to be equivalent to the discriminant analysis of Chapter 11. The
sex-habitat variable is coded as four dummy variables, and it can be shown that
the constrained space is exactly the space of the four centroids, thus the LRA-DA
of Exhibit 11.2 is obtained. In a similar way, if the “women” data set is analyzed at
an individual level, that is the indicator matrix Z is analyzed, and if the solution is
constrained to be linearly related to the five dummy variables for marital status,
this results in the CA (also called CA-DA) of the aggregated data in Exhibit 11.3.

Whether it is a PCA, LRA or CA that is being performed, the imposition of the
constraint is done in the same way. We give the theory for constrained CA, also
known as canonical correspondence analysis (CCA), and then explain how this ap-
plies to the other methods. Regular unconstrained CA involves the SVD of the
matrix of standardized residuals—see (8.2):

S = Dr
−½(P − rcT)Dc

−½ = UDαV
T (12.1)

Suppose that X denotes the I × M matrix of external constraining variables, and
suppose that the columns of X have already been standardized. Notice that, be-

Exhibit 12.1:
The log-ratio biplot with the
first axis constrained to be
body weight. Rows (fish) are
in standard coordinates,
columns (morphometric
variables) in principal
coordinates. The
constraining variable body
weight follows the scale of
the rows

Constrained biplots

CONSTRAINED BIPLOTS AND TRIPLOTS

121

–2 –1 0 1 2

–
2

–
1

0
1

2
–0.04 –0.02 0 0.02 0.04

–
0
.0

4
–
0
.0

2
0

0
.0

2
0
.0

4
3

fP

mL

mL

mL

fL

mL

mL

fL

fP

fP

mP

mP

mP

mP

mP

fPmL
mL

fL

fL

fL

fL

mL
fL

fL

mL

mL

fL

mL

mL

mL

mL

fL

fL

fL

fL

mL

fL

mL

mL

fL

mL

mL

mL

mL

mL

mL

fL

fL

fL

mL

mL

mP

mL

fL

fL

mL

fL

fL

fL

mL

fL

mLfL
fLmL

mL

fL

fL

fP

mP

fP

fP

fP

fP

Hw

Bg

Bd
Bcw

Jw

Jl
Bp

Bac

Bch

Fc

Fdw

Faw

Bc

Fp

Fpl

Fal

Fdl

Hh

Hg

Ba

Jm

Hal

Hpl

Ed

HsHl

weight



cause the rows are weighted by the masses in r, all calculations of mean and vari-
ance are performed using these masses, so the columns of X have weighted mean
of 0 and weighted variance (inertia) of 1. Constraining the solution linearly
means projecting S onto the space of X. The projection matrix is defined as fol-
lows (again, the masses are taken into account):

Q = Dr
½ X(XTDr X)−1XTDr

½ (12.2)

(one can easily check that Q satisfies the condition of a projection matrix: QQ = Q,
i.e. applying the projection twice is the same as applying it once). The constrained
(or restricted) version of S is then:

S* = QS (12.3)

From here on the calculations continue just as for CA, first calculate the SVD and
then the principal and standard coordinates—see (8.2) to (8.4):

SVD: S* = UDαV
T (12.4)

Exhibit 12.2:
The possible relationship
between the log-ratio of
Bcw to Ed and body

weight that was diagnosed
in the biplot
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Principal coordinates of rows: F* = Dr
−½UDα, of columns: G* = Dc

−½VDα (12.5)

Standard coordinates of rows: Φ* = Dr
−½U,    of columns: Γ* = Dc

−½V (12.6)

The above solution has as many principal axes as there are variables (or one less
in the case of dummy variables).

There is a similar sequence of calculations to find the principal axes of the un-
constrained space. Projection takes place onto the space orthogonal to (i.e., un-
correlated with) the variables in X. This projection matrix is just I − Q, so the un-
constrained (or unrestricted) part of S is now: 

S⊥ = (I − Q)S (12.7)

(hence S has been split into two parts: S = S* + S⊥). The same steps now proceed,
where we re-use the same notation U, Dα and V for the SVD components, al-
though they are numerically different here, of course:

SVD: S⊥ = UDαV
T (12.8) 

Principal coordinates of rows: F ⊥ = Dr
−½UDα, of columns: G⊥ = Dc

−½VDα (12.9) 

Standard coordinates of rows: Φ ⊥ = Dr
−½U, of columns: Γ⊥ = Dc

−½V (12.10)

Constrained LRA is almost identical to the above, starting with the double-cen-
tred matrix of log-transformed data, and using the same row and column masses
as weights (in Chapter 15 we give the exact formulation). For unweighted LRA,
these weights would just be 1/I for the rows and 1/J for the columns. Similarly
for PCA, where the weights are generally equal, implementing the constraints in-
volves starting with the centred (and optionally standardized) matrix, and apply-
ing the above steps using weights ri = 1/I and c j = 1/J. Linearly constrained PCA
has also been called redundancy analysis in the literature.

When there are two constraining variables, they will still be perfectly explained by
the plane of the first two constrained axes, but neither variable will necessarily be
identified exactly with a principal axis. For three or more constraining variables
the two-dimensional constrained space of representation does not display the
constraining variables perfectly. In this case there are two levels of approximation
of the data matrix, as depicted in Exhibit 12.3. First the data matrix is split into
two parts: the part which is linearly related to the constraining variables, and the
part that is not (i.e., S = S* + S⊥ in the formulation above). Then dimension re-
duction takes place just as before, but in the constrained space (i.e., the principal

Decomposition 
of variance
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axes of S* are identified), with constraining variables being displayed in the usu-
al regression biplot style. Dimension reduction can similarly be performed in
the unconstrained space by identifying the principal axes of S⊥. This decompo-
sition scheme is illustrated in Exhibit 12.4 for the fish morphology analysis, where
the first dimension is constrained by body weight. Since there is only one con-
straining variable, no dimension reduction is performed in the constrained space.
Body weight is represented perfectly on the first dimension, and the second axis
of the solution is the optimal first dimension of the unconstrained data space.

In a constrained biplot there are three sets of points and the display is called a
triplot. The third set of points added to the biplot consists of the constraining vari-
ables, and they are usually displayed in terms of their regression coefficients with
respect to the dimensions of the biplot. Their directions will then be biplot axes
onto which the sample points (usually rows) can be projected to give estimates of
their values, as before. If the rows have been displayed in standard coordinates,
then the constraining variables have directions equal to their correlation coeffi-
cients with the axes.

An application to the data set “benthos” illustrates the triplot when there are sev-
eral explanatory variables. For each site the levels of six variables were measured:
total hydrocarbon content (THC), total organic material (TOM), barium (Ba),

Exhibit 12.3:
The full space

decomposition into the
constrained space (brown)

and unconstrained space
(white). Within each space

there is a part of the
variance (or inertia) that is
explained in the respective

low-dimensional displays
(area with green shading)

Triplots
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cadmium (Cd), lead (Pb) and zinc (Zn). It was preferable to log-transform these
variables because of some very large values. Exhibit 12.5 shows the resultant
triplot of the CCA restricted to the space of these six explanatory variables (in
other words, dimension reduction has been performed from a six-dimensional
space to a two-dimensional one). The sites in the triplot are in standard coordi-
nates, and the species are at weighted averages of the sites. The explanatory vari-
ables are shown as vectors with coordinates equal to their regression coefficients
on the axes (notice the different scale for these vectors). The reference stations
are much more separated from the polluted stations now that the solution is con-
strained by variables that essentially measure pollution. Barium appears to be the
variable that lines up the most with the separation of the reference stations from
the others, pointing directly away from the unpolluted reference stations. The
variable least associated with the unpolluted versus polluted contrast appears to
be total organic material.

The corresponding decomposition of inertia is shown in Exhibit 12.6, showing
that the six explanatory variables explain 65% of the total inertia in the data. Of
this, 72.5% is explained by the two dimensions of the triplot. Because the ex-
planatory variables are displayed using standardized regression coefficients, their
lengths are related to how much of their variance is explained by the axes: the
least is TOM (46% variance explained), and the most is Zn (96% variance ex-
plained).

As in multiple regression, the more explanatory variables that enter, the more
variance is explained. When the number of explanatory variables equals the num-
ber of cases 100% of the variance would be explained and then there is effective-

Exhibit 12.4:
The decomposition of
variance (or inertia), first
into the one-dimensional
constrained space of body
weight and the
unconstrained space
uncorrelated with body
weight. The constrained
space forms the first
dimension of the biplot,
which is only 4.0% of the
total variance, and the first
dimension of the
unconstrained space forms
the second dimension of the
biplot, explaining 20.7% of
the total variance 

Stepwise entry of the
explanatory variables
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ly no constraint on the data and the analysis would be a regular biplot. To reduce
the number of explanatory variables in such an analysis, a stepwise entry of ex-
planatory variables is often performed, which ensures that only variables that ex-
plain a significant part of the variance are entered. At each step the variable that
explains the most additional variance is entered and this additional variance is
tested using a permutation test. The process continues until no variables entering
produce a significant increase in explained variance. This procedure is illustrat-
ed in the case study of Chapter 15.

1. Biplots, whether they are based on PCA, CA or LRA, display the data in a re-
duced dimensional space, usually a plane, with the objective of approximating
the original data as closely as possible.

2. Often the data matrix can be regarded as responses to be explained by some
explanatory variables that are available. The original biplot dimensions are not
necessarily related to these explanatory variables, but an alternative approach
constrains the principal axes of the biplot to be specifically related to these
variables.

Exhibit 12.5:
Triplot of the “benthos”

data, showing the six
constraining variables. Of

the total inertia (0.7826) of
the species abundance

data, 65% is in the
constrained space, of which

72.5% is displayed in the
triplot

SUMMARY:
Constrained Biplots 

and Triplots
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3. The constraint is usually a linear one: the data are projected first into the con-
strained space which is linearly correlated with the explanatory variables, and
then dimension reduction takes place as before.

4. The result of such an analysis with constraints is a triplot, showing the rows and
columns of the original data matrix of interest, plus vectors indicating direc-
tions for the explanatory variables.

5. The dimensions of the residual, or unconstrained space, may also be of inter-
est. In this space variance or inertia is explained in biplots that are uncorre-
lated with the explanatory variables.

6. The initial total variance or inertia of the data matrix is decomposed first into
a constrained part (linearly related to the explanatory variables) and a resid-
ual unconstrained part (uncorrelated with the explanatory variables). Biplots
can also be constructed for the unconstrained part of the data. 

7. Explanatory variables are often entered stepwise, where the entering variable
is the one that explains the most additional variance in the data, and this
added variance can be tested for statistical significance.

8. For a single categorical variable as an explanatory variable, where the cate-
gories are coded as dummy variables, the constrained analysis is equivalent to
a discriminant analysis between the categories.

Exhibit 12.6:
The decomposition of
inertia, first into the six-
dimensional constrained
space of the explanatory
environmental variables and
the unconstrained residual
space that is uncorrelated
with the explanatory
variables. In the constrained
space the first two
dimensions explain 72.5%
of the constrained inertia,
which is 47.1% of the
original grand total
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