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Transformations and 
standardization

Appendix 

Aspects of Theory

This appendix summarizes the theory described in this book. The treatment is 
defi nitely not exhaustive and the bibliography in Appendix B gives some pointers 
to additional reference material. We deal with the theory in more or less the same 
order as the corresponding methods appeared in the text, although some topics 
might be grouped slightly differently.
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The most common measurements scales are:

  Continuous interval: differences between values are measured and interpreted; 
variables on this scale can have negative values; we also say an additive scale. For 
example, time, temperature.

  Continuous ratio: ratios between values are measured and interpreted (i.e., per-
centage differences); variables on this scale have positive values; we also say a 
multiplicative scale. For example, heavy metal concentration, weight.

  Categorical (or discrete) nominal: only a few categories are possible and they have 
no particular order. For example, region, phylogenetic group.

  Categorical (or discrete) ordinal: only a few categories are possible and they do 
have an inherent ordering. For example, month, sediment class.

A
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  Count: Variable that takes positive integer values, including 0; we also say a fre-
quency. For example, abundance count, number of offspring.

  Compositional: this refers to a set of variables with the unit-sum constraint, pro-
portions that add up to 1 (or 100% if percentages). For example, a set of fatty 
acid compositions, relative abundances of a set of species.

Standardization is often applied to put different variables on the same scale. For 
data x1, …, xn on an interval-scale variable the most common is to make them all 
mean 0, variance 1, by centering (i.e., subtracting) with respect to the mean x  and 
normalizing (i.e., dividing) with respect to the standard deviation s.

 , 1z i= = , , ni

x x

s
i …
−  (A.1)

Other forms of standardization might be deemed more suitable, such as center-
ing with respect to the median and normalizing by the range. 

For positive data x1,…, xn on a ratio-scale variable, a convenient transformation is 
the logarithm:

 zilog(xi) (A.2)

because it converts the ratio-scale variable x to an interval-scale variable z, which 
needs no further normalization.

Nominal and ordinal categorical data are often converted to dummy variables, 
which are as many variables as there are categories, taking the values 0 and 1.

Count data as well as compositional data are similar to ratio-scale variables 
and are usually logarithmically transformed, or root-transformed (square root, 
fourth root…). If there are zero count values, then they are often transformed as 
log(1x). In the case of compositional data, we prefer to replace zeros with small 
values equal to the detection limit in the context of the data.

The Box-Cox transformation is a general power transformation for ratio-scale, 
count and compositional data:

 z x= −( )1 1
λ

λ  (A.3)

usually for powers  less than 1, and where for zero values of x, x 0. As the 
power  tends to 0 (we say as the root transformation gets stronger) the transfor-
mation gets closer and closer to the log-transformation log(x). 
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Measures of distance 
and dissimilarity

Differences between values of a single interval variable are computed simply by 
subtraction, while for a ratio variable or a count, multiplicative differences can be 
computed by taking ratios, or differences on the log-scale. For multivariate sam-
ples difference is measured by a distance or dissimilarity which combines differ-
ences across the variables. A distance has all the properties of a well-defi ned met-
ric, including the triangular inequality property. A dissimilarity is an acceptable 
measure of inter-sample difference but does not obey the triangular inequality.

A general distance is the weighted Euclidean distance, computed between two sam-
ples x1,…,xp and y1,…,yp observed on p variables, with weights on the variables 
w1,…,wp:

 ∑
j

p

= 1

d w x yx y j j j= −( ),
2  (A.4)

Well-known special cases are:

  Euclidean distance, when wj1; applicable to set of interval variables all on the 
same scale that do not need normalization, or a set of ordinal variables, all on 
the same scale (e.g., fi ve-point ordinal scales of plant coverage) for which the 
inter-category differences are accepted as interval measures.

  Standardized Euclidean distance, for a set of interval-scale variables: wj1/s j
2, 

the inverse of the variance of the j -th variable; this is the distance function 
computed by standardizing all the variables fi rst and then applying the regular 
unweighted Euclidean distance.

  Chi-square distance, for abundance, relative abundance, and compositional 
data: wj1/cj , where cj is the mean for variable j. 

The Bray-Curtis (or Sørensen) dissimilarity (which is not a true distance function, 
since it does not obey the triangle inequality) is a popular choice for measuring 
differences between samples when the data are abundances, or other positive 
amounts such as biomasses:
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 (A.5)

For one/zero data, for example presence/absence data, there are many possibili-
ties and we only summarize the two presented in this book, the matching  coeffi -
cient and Jaccard dissimilarity. For p variables observed on two samples, we defi ne 
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Cluster analysis

anumber of variables matched with a 1 in both samples, dnumber of matches 
of 0 in both samples, bnumber of variables “mismatched” with 1s in the fi rst 
sample, 0s in the second, cnumber of mismatches with 0s in the fi rst sample, 1s 
in the second, so abcdp. Then:

  Matching: (bc)/p (actually, this is a measure of mismatching) (A.6)

  Jaccard: (bc)/(pd) (A.7)

Both the above dissimilarities lie between 0 and 1, with 0 when there are no mis-
matches. For matching the maximum value of 1 is attained when ad0 (no 
1s or 0s matched), while for Jaccard, which ignores matching 0s, the maximum 
of 1 is reached when a0 (no 1s matched). Jaccard is preferable for presence/
absence data when the co-occurrence of absences is not interesting, only the co-
occurrence of presences.

For mixed-scale multivariate data, usually continuous and categorical mixed, some 
form of normalization or homogenization is required so that it makes sense to com-
bine them into a measure of inter-sample difference. The Gower index of dissimilarity 
(not discussed in the book) involves applying a standardization on the continuous 
variables to make them comparable to the categorical ones that are dummy coded, 
after which Euclidean distance is applied. The alternative that is presented in this 
book is to fuzzy code the continuous variables into sets of fuzzy categories. Fuzzy cat-
egories corresponding to a continuous variable look like a set of dummy variables 
except that they have any values between 0 and 1, not exactly 0 or 1, and in this 
way preserve the exact value of the continuous variable in categorical form. With 
the categorical variables coded as dummy variables and the continuous variables 
coded as fuzzy categorical variables, Euclidean distance can be applied, possibly 
with weights to adjust the contributions of each variable to the measure of distance. 

To defi ne a method of cluster analysis one defi nes the algorithm used to imple-
ment the method. Two approaches are of interest, hierarchical and nonhierar-
chical clustering, both of which rely on a matrix of proximities (distances or dis-
similarities) between pairs of objects to be clustered, where objects can be sampling 
units such as sites or variables such as species.

Hierarchical cluster analysis creates a dendrogram, or binary tree, in a stepwise fashion, 
successively aggregating objects, two at a time, and eventually aggregating groups 
of objects as well, according to their proximities. Assuming a decision about the 
measure of proximity has been made, the crucial decision is then how to measure 
proximity between groups of objects formed in the previous stage of the stepwise 
procedure. The main options in practice are: (1) complete linkage, where the 
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Multidimensional scaling

maximum distance or dissimilarity value between groups is used; (2) average link-
age, where the average value is used; or (3) Ward clustering, a different ANOVA-
like approach which maximizes the overall between-group variance at each step of 
the clustering, equivalently minimizing within-group variance. The fi nal result is a 
dendrogram, which is then cut at a certain level to create a small number of groups 
of objects, designed to be internally homogeneous and distinct from one another.

Nonhierarchical cluster analysis is used when the number of objects is very large, say 
greater than100, when the dendrogram becomes unwieldy to interpret. The most 
popular example is k-means clustering, which has the same objective as Ward clus-
tering, to maximize between-group variance while minimizing within-group vari-
ance. The number of groups k is pre-specifi ed and the algorithm proceeds from 
a random start to create k groups iteratively, at each iteration assigning objects to 
the group with the closest mean. The solution is seldom globally optimum and 
several random starts are recommended, and the best fi nal solution accepted.

While clustering results in a grouping of objects, multidimensional scaling (MDS) 
results in an ordination map of the objects. Given a matrix of inter-object prox-
imities, MDS fi nds a confi guration of the objects in a space of specifi ed dimen-
sionality, almost always a two-dimensional plane, such that the displayed inter-
object distances are as close as possible to the given proximities. Different ways 
of measuring the fi t between the displayed distances, gathered in a matrix D, and 
the given proximities, gathered in a matrix , lead to different MDS techniques. 

Classical MDS, also called principal coordinate analysis, relies on the eigenvalue-ei-
genvector decomposition, called eigen-decomposition, of a square matrix of scalar 
products to obtain a solution. Initially, the elements of the given proximity ma-
trix are squared – this matrix of squared distances or dissimilarities is denoted 
by (2). To give the most general form of classical MDS, we assume that there 
is a set of positive weights w1,…,wn assigned to the n objects, where i wi1, so 
that the objective is to optimize a weighted fi t where objects of higher weight 
are displayed more accurately in the solution. An operation of double-centering 
and multiplying by ½ is applied to (2) to obtain the scalar product matrix S:

 S½(I1wT)(2)(I1wT)T (A.8)

where I is the nn identity matrix, 1 is the n1 vector of 1s and w the n1 
vector of weights. Centering of the values in the columns of (2) is performed 
by premultiplying by the centering matrix (I1wT), while post-multiplying by the 
transposed centering matrix centers the values in the rows. The eigen-decompo-
sition is then obtained on a weighted form of S, where Dw is the diagonal matrix 
of weights:
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Principal component 
analysis, correspondence 

analysis and log-ratio 
analysis

 Dw
½ S Dw

½UDU
T (A.9)

U contains the eigenvectors of S in its columns and D is a diagonal matrix with 
the eigenvalues of S down the diagonal, in decreasing order. The principal coordi-
nates of the objects are fi nally given by:

 FDw
½ UD

½ (A.10)

The rows of F refer to the objects and the columns to the principal axes of the 
solution in decreasing order of importance. For a two-dimensional display the 
fi rst two columns provide the coordinate pairs (fi 1, fi 2) for displaying the i -th 
object. The sum of the eigenvalues are a measure of the total variance and each 
eigenvalue a measure of explained variance by a principal axis, hence the quality 
of display in a two-dimensional solution, which can be interpreted like an R 2 in 
regression, is (12)/kk.

When all the nonzero eigenvalues are positive, the given matrix of proximities is 
Euclidean embeddable, which means that it is possible to represent the objects in a 
Euclidean space, with dimensionality equal to the number of positive eigenvalues. 
When there are some negative eigenvalues, their absolute values quantify the part 
of variance that is impossible to represent in a Euclidean space. For example, a 
matrix of chi-square distances is always Euclidean embeddable, while a matrix of 
Bray-Curtis dissimilarities is not. This fact has led to practitioners preferring non-
metric MDS to display Bray-Curtis dissimilarities.

Nonmetric MDS relaxes the measure of fi t between the displayed distances and the 
given proximities. A perfect fi t in nonmetric MDS would be when the order of all 
the displayed distances is the same as the order of all the given proximities. Spe-
cifi cally, if the ½n(n1) displayed distances are listed next to the ½n(n1) given 
proximities, a perfect fi t would give a Spearman rank correlation between the two 
lists of 1. Rather than measure quality of fi t, nonmetric MDS measures error of fi t 
using a quantity called stress, so a perfect fi t would be a stress of 0. The measure of 
stress will always appear more optimistic than the measure of unexplained variance 
in classical MDS, but this does not imply that nonmetric MDS is an improvement 
– classical MDS has a stricter objective, and thus more error in achieving it. 

These three methods, abbreviated as PCA, CA and LRA, are variations of the 
same theme, so we treat them together. All three methods start with a rectangular 
data matrix, prepared according to the method for being decomposed by the sin-
gular-value decomposition (SVD). The SVD is similar to the eigen-decomposition 
but applicable to rectangular rather than square matrices. All three methods can 
be defi ned using eigen-decompositions as well, but the SVD approach is more 
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elegant and brings out clearly the features of the eventual joint display, for exam-
ple, whether the display is a biplot or not. 

The SVD is defi ned as follows, for a rectangular matrix A (IJ ):

 AUDV
T (A.11)

where U (IR) and V (IR) have orthonormal columns: UTUVTVI, and D 
is a diagonal matrix of positive values in descending order: 12···R0. R 
is the rank of A. The columns of U and V are called left and right singular vectors, 
respectively, corresponding to the singular values r. (A.11) can be written equiva-
lently as the sum of R terms, each of which involves a singular value and associated 
pair of singular vectors:

 A1u1v1
T2u2v2

T···RuRvR
T (A.12)

Since each matrix urvr
T has sum of squared elements equal to 1 and the singular 

values are in descending order, this already suggests that the fi rst terms of (A.12) 
come close to reproducing the matrix A. In fact, the famous Eckart-Young theo-
rem states that the fi rst R * terms constitute a rank R * least-squares matrix ap-
proximation of A – if we take the fi rst two terms, for example, which is the most 
popular choice, then we have a rank 2 approximation of A, and this will provide 
us with coordinates of points representing the rows and columns of A in a two-
dimensional plot. 

We need a slightly more general form of the SVD to take into account weights as-
signed to the rows and columns. Suppose r1,…,rI and c1,…,cJ are, respectively, two 
such sets of weights, all positive and each set adding up to 1. Then, the weighted 
form of the SVD, which gives weighted least-squares approximations to A, is ob-
tained by fi rst multiplying the elements aij of the matrix by the square roots of the 
weights, (ricj)

½, then decomposing this reweighted matrix by the SVD, and fi nally 
“de-weighting” the fi nal result. In matrix formulation these three steps are as fol-
lows, where Dr and Dc denote diagonal matrices of the row and column weights:

  Weight rows and columns: Dr
½ ADc

½  (A.13)

  Compute SVD: Dr
½ ADc

½UD V
T (A.14)

  “De-weight” to get the solution: A(Dr
½ U)D(Dc

½ V)T (A.15)

Solutions of PCA, CA and LRA can be found by specifying the input matrix A and 
the weights. In all cases there is some type of centering of the original data matrix 
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Supplementary variables 
and points

to obtain A. Centering of the columns, for example, as seen already in (A.8), is 
performed by pre-multiplying by (I1rT), where r is the vector of row weights. 
Centering of the values in the rows involves post-multiplying by (I1cT)T, where 
c is the vector of column weights. Here follow the three variants:

PCA: The data matrix Y contains interval-scale data, cases in rows, variables 
in columns. Usually case and variable weights are equal, i.e. r(1/I )1 and 
c(1/J )1, where 1 denotes an appropriate vector of ones. The columns are 
centered and optionally standardized, for example in the unstandardized case, 
A(I(1/I )11T)Y. For the standardized case, divide the values in each column 
of Y by their respective standard deviation.

CA: The data matrix Y contains nonnegative ratio-scale data, usually counts 
such as abundances, or biomasses or percentages. Suppose P equals Y divided 
by its grand total, so that the sum of all elements of P is 1. The row and column 
sums of P are r and c, the row and column weights. Compute the matrix of ratios 
pij /(ricj ), i.e. Dr

1P Dc
1. Then A is the double-centered matrix of these ratios: 

A(I1rT) Dr
1P Dc

1(I1cT)T.

LRA: The starting point of LRA is similar to CA, except that the data matrix Y 
must be strictly positive. Again the masses r and c are the row and column sums 
of Y relative to the grand total. Then A is the double-centered matrix of the loga-
rithms of Y: A(I1rT) log(Y)(I1cT)T.

After putting these options through steps (A.13)–(A.15), various coordinates can 
be computed:

Principal row coordinates: Dr
½ UD Principal column coordinates: Dc

½ VD (A.16)

Standard row coordinates: Dr
½ U Standard column coordinates: Dc

½ V (A.17)

Contribution row coordinates: U Contribution column coordinates: V (A.18)

In each method the total variance, customarily called inertia in CA, is the sum 
of squared singular values computed in (A.14). This is identical to the sum of 
squared elements of the weighted matrix in (A.13). The part of variance ex-
plained by the fi rst R * dimensions of the solution (e.g., R *2) is the sum of the 
fi rst R * squared singular values. The squared singular values are, in fact, eigenval-
ues in the equivalent defi nitions in terms of eigen-decompositions.

In all three methods there is the concept of a supplementary variable and a supple-
mentary point. A supplementary variable is an additional continuous variable that 
is related to the low-dimensional solution afterwards, using multiple regression. 
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Dimension reduction 
with constraints

When the supplementary variable is standardized and the row standard coordi-
nates are used as explanatory variables, the regression coeffi cients reduce to the 
correlation coeffi cients of the variable with the dimensions, thanks to the dimen-
sions being uncorrelated. Hence the supplementary variable can be represented 
by coordinates equal to their correlation coeffi cients. If the rows are displayed in 
standard coordinates then they have a biplot relationship with these supplemen-
tary variables: rows can be projected onto the supplementary variable direction 
to line up the rows on that variable, the origin being the average. Notice that if 
there are row weights, then the regression and correlation calculations have to 
be weighted.

A supplementary point is an additional row (or column) that one wants to add 
to the existing map. This point differs from a supplementary variable in that it is 
comparable in scale to the data matrix that was analysed (called the active data 
matrix – sometimes a supplementary point is referred to as passive). For example, 
in a CA of abundance data, there might be additional species, or groups of spe-
cies, that one wants to situate in the ordination. These have profi les just like the 
active data, and they can be projected onto the solution just like the active profi les 
were projected. The only difference is that the supplementary points have not 
been used to construct the solution, as if they were data points with zero weight. 
Supplementary points are often used as an alternative way of representing a cat-
egorical variable in an ordination. For example, again in CA, suppose the data 
were fi sh abundances, with columns as fi sh and classifi ed into two types, pelagic 
and demersal. Aggregating all the columns corresponding to pelagic fi sh and all 
those corresponding to demersal fi sh gives two new columns labelled pelagic and 
demersal. These aggregated abundances have well-defi ned profi les in the column 
space and can be displayed on the ordination – in fact, their positions will be at 
the respective weighted average positions of the set of pelagic and set of demersal 
fi sh. In a similar way, fuzzy categories can be displayed. For example, the rows 
(e.g., sites) may have fuzzy categories for temperature, so aggregation of abun-
dances is now performed over the rows to get four fi ctitious sites representing 
the fuzzy categories. The aggregation must be fuzzy as well, in other words, the 
abundances are multiplied by the fuzzy value and summed.

The three methods defi ned above lend themselves in exactly the same way to 
include a second data matrix X (IK ) of K explanatory variables, continuous 
and/or categorical in the form of dummy variables, that serve to constrain the 
solution. The data matrix Y is then regarded as responses to these explanatory 
variables, or predictors. Suppose X is standardized, always taking into account 
the weights assigned to the rows, in other words the columns of X have weighted 
means zero and weighted variances 1. The matrix A is fi rst projected onto the 
space of the explanatory variables:
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Permutation testing and 
bootstrapping

 A X[ X(XTDrX)1XTDr ]A (A.19)

and then the same three steps (A.13)–(A.15) are applied to AX instead of A, with 
the same options for the coordinates. This gives, respectively, redundancy analysis 
(PCA with constraints), canonical correspondence analysis (CCA, CA with con-
straints), and constrained log-ratio analysis. AX is that part of the response data 
that is perfectly explained by the predictors. The matrix AA X is the part of the 
response data that is uncorrelated with the predictors. If X includes variables that 
one wants to partial out, then AA X is analysed using the same steps (A.13)–
(A.15). In the case of CCA this is called partial CCA.

The total variance (or inertia) is now fi rst partitioned into two parts, the part 
corresponding to the projected matrix A X, which is in the space of the predic-
tors, and the part corresponding to AA X, which is in the space uncorrelated 
with the predictors. Otherwise, the computation of coordinates defi ned in 
(A.16)–(A.18) and the addition of supplementary variables and points follow 
in the same way.

The solutions obtained in all the multivariate analyses described in this book 
should be regarded as a complex point estimate – dendrograms and ordinations 
do not contain any information about the statistical signifi cance of the results 
or whether the results would have been any different if the study were repeated 
in the same way. In order to perform hypothesis testing or to obtain intervals 
or regions of confi dence, some standard multivariate tests exist for very spe-
cial situations, which have quite restrictive assumptions, for example that data 
come from a multivariate normal distribution. We resort to computationally 
intensive methods to judge whether our solutions are nonrandom, refl ecting 
some actual structure rather than random variation. In this book we have used 
permutation testing to obtain p -values associated with certain hypotheses, and 
bootstrapping to obtain measures of confi dence, although this distinction is 
actually blurred (for example, one can do hypothesis testing using bootstrap-
ping as well). 

Permutation testing can be used for testing differences between groups. Under 
the null hypothesis that there is no inter-group difference, so that all the observa-
tions (e.g., sites) come from the same distribution, we can randomly assign the 
group labels to the observations and measure the inter-group difference by some 
reasonable statistic, such as the between-group sum of squares in multivariate 
space. Doing this a large number of times, obtaining a large number – say 9,999 
– of values of the statistic, which defi nes its null distribution. Then, we see where 
the actual inter-group measure (in this case, the 10,000th) lies on this distribution 
and the estimated p -value is the proportion of all 10,000 values equal to or more 
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extreme than this value. The actual value is included in this proportion, so the 
smallest p -value obtainable would be 1/10,0000.0001 in this case. 

Permutation testing of inter-variable associations proceeds differently. In the case 
of a CCA, for example, there are two sets of variables, the response set and the 
explanatory set. We can measure how much inertia of the response data Y is ex-
plained by the explanatory data in X – this is the constrained inertia contained in 
the matrix A X defi ned above. The null hypothesis is that there is no association, in 
which case every set of observations on the explanatory variables could be paired 
with any set of observations on the responses. So we randomize the order of one 
set of data, for example the rows of the explanatory data X, each time comput-
ing the amount of response inertia (or proportion) explained, doing this again 
thousands of times. The actual value of inertia explained is compared to the right 
tail of the null distribution to estimate the p -value.

Permutation testing can be used to give a guideline about the level at which a 
dendrogram should be cut to obtain signifi cant clustering. Our approach has 
been to randomize the values within each column of data, that is shuffl e them up 
randomly, assuming the columns contain the variables of the data, and recomput-
ed the dendrogram each time. The node levels are stored for each dendrogram 
computed and this gives an idea of the null distribution of each level for data 
where there is no structure between the variables. The node levels of the actual 
dendrogram computed on the original data are then compared to these null 
distributions to obtain a p -value for each node. Here we are looking for values 
in the left tail of the respective null distributions, because signifi cant clustering 
would be when the node levels are generally low in value. There can be several 
signifi cant p -values in this case, and the fi nal choice is based on these, substantive 
knowledge and the number of groups being sought.

Permutation testing can be similarly used for deciding on the dimensionality of 
the ordination solution. The columns of data are similarly randomized, each giv-
ing new parts of variance on the recomputed dimensions. This is done thousands 
of times, generating a null distribution of the parts of variance for the fi rst dimen-
sion, second dimension, and so on. The original parts of inertia are compared to 
their corresponding null distributions to estimate a p -value for each dimension. 
In this case, p -values will generally increase for successive dimensions, and an 
obvious cut-off will appear, which usually coincides with the rule of thumb based 
on the scree plot of the eigenvalues.

To illustrate the use of bootstrapping for this last example, suppose we want a 
confi dence region around the percentages of variance in a PCA, CA or LRA. 
The I rows of the data matrix are sampled, with replacement, until we have 
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a bootstrap sample, also of I rows. This means that some rows can be chosen 
more than once, others not at all – this differs from permutation testing where 
observations are simply re-arranged in a random order. For each bootstrap 
sample the multivariate method is recomputed and the percentages of inertia 
stored, and this is repeated thousands of times. This procedure results in an 
estimated distribution of percentages of inertia for each dimension, and a 95% 
confi dence interval for each can be determined by cutting off 2.5% of the values 
on either tail of the distribution.

In the situation where we relate a single response to a set of explanatory variables, 
regular statistical modelling can be applied. Generalized linear modelling, gen-
eralized additive modelling and classifi cation and regression trees, are alternative 
ways to model this relationship. 

The most restrictive is generalized linear modelling (GLM), since it assumes that 
the effects of the explanatory variables are linear. But the way the linear effect 
translates to a change in the conditional mean of the response, called the link 
function, is different depending on the measurement scale of the response. The 
three most common types of responses are interval-scale continuous, ratio-scale 
count, and categorical binary:

Response variable Link function Conditional distribution Name of method

Continuous: Identity Normal Multiple linear regression

Count: Logarithm Poisson Poisson regression

Categorical (binary): Logit (log-odds) Binomial Logistic regression

The formulation of a generalized linear model is:

 y x x( )= + + +1 1 2 2η α β β �   (A.20)

with inverse transformation

 y x(= +−1
1 1η α β ++ +β2 2x �)   (A.21)

where  is the link function and the conditional distribution of the response is 
the one corresponding to it, with mean given by (A.21). The inverse function 1 
is exp(·) for log and exp(·)/[1exp(·)] for logit.

Generalized additive modelling (GAM) is like GLM, but with a freer and more 
fl exible range of possibilities for the shape of the relationship between the 
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response and each explanatory variable. The linear model on the right of (A.20) 
is replaced by a sum of smooth terms: s(x1)s(x2). Each smooth func-
tion s(·) is quite general, and involves tying together several cubic functions 
called a smoothing spline. These functions have estimated degrees of freedom and 
their form can either confi rm approximate linearity of the relationship or sug-
gest a transformation of the explanatory variables to accommodate a nonlinear 
relationship.

Both GLMs and GAMs can include interactions between the explanatory vari-
ables. Classifi cation and regression trees (CART) form an alternative nonpara-
metric approach that uses simple rules for predicting the response by cutting 
up the range of the predictors, but specifi cally looking for interactions in the 
form of combinations of intervals of the predictors which maximize the fi t to 
the response. The result is a decision tree that allows every case to be run down 
it, according to the conditions at each node, to arrive at a terminal node that 
predicts the response, either the mean or median for a continuous response, or 
a set of probabilities for a categorical response that lead to the prediction of the 
most likely category.


