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Data theory

Chapter 

Measurement Scales, Transformation 
and Standardization

To conclude this introductory part on multivariate data analysis, we present a dis-
cussion about scales of measurement and the various possibilities for transform-
ing variables. Questions such as the following can plague environmental biolo-
gists: “Should I log-transform my data?”, “How do I analyse a data set where there 
is a mixture of continuous and categorical variables?”, “My data are not normally 
distributed, does this matter? And if it does, help!”, “Do I need to standardize my 
data?” and “My data are percentages that add up to 100: does this make a differ-
ence to the analysis?” The answers to some of these questions will only become 
fully apparent later, but at least in this chapter we will catalogue some of the issues 
involved and list some of the standard ways of transforming data. Readers can op-
tionally skip this chapter for the moment if they are keen to proceed, and dip into 
it later as we refer back to these issues when they come up in real applications.
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Data are the manifestation of statistical variables, and these variables can be clas-
sifi ed into various types according to their scales of measurement. Our own per-
sonal hierarchical classifi cation of measurement scales is depicted in Exhibit 3.1. 
The main division, as we have mentioned already, is between categorical and 
continuous scales. This is a pragmatic distinction, because in reality all observed 
data are categorical. As Michael types these words his age is 59.5475888 years 

3
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Exhibit 3.1:
A classification of data in 

terms of their measurement 
scales. A variable can be 

categorical (nominal or 
ordinal) or continuous 

(ratio or interval). Count 
data have a special place: 

they are usually thought 
of as ratio variables but 
the discreteness of their 

values links them to 
ordinal categorical data. 
Compositional data are a 
special case of ratio data 

that are compositional in a 
collective sense because of 
their “unit-sum” constraint (to seven decimal places and, theoretically, we could give it to you with even more 

accuracy), but it has now already advanced to 59.5475902 years in the interim, 
and is increasing by the second! Of course, in any statistical study, for example 
an epidemiological study, his age would be recorded simply as 59, having been 
discretized. But we still consider the value 59 to be the manifestation of the continu-
ous variable “age”.

Categorical data can be measured on a nominal or ordinal scale. Nominal catego-
ries have no ordering: for example, region of sampling (1. Tarehola, 2. Skognes, 
3. Njosken, or 4. Storura), and habitat (1. pelagic, or 2. littoral), hence the num-
bers recorded in the database have no numerical meaning apart from assigning 
the samples into groups. Ordinal categories do have an ordering: for example, 
nature of substrate (1. clay, 2. silt, 3. sand, 4. gravel, or 5. stone – these are ordered 
by grain size), and month of sampling (1. June, 2. July, 3. August, 4. September), 
hence the ordering of the numbers (but not their actual values) can be taken 
into account in the subsequent statistical analysis. Circular ordering of categories 
(e.g., directions N, NE, E, SE, S, SW, W, NW) is a very special case, as are angular 
data in the continuous case, where 360 is identical to 0. 

Continuous data can be measured on a ratio or interval scale. A continuous scale 
is classifi ed as ratio when two numbers on the scale are compared multiplicatively, 
and an interval scale is when they are compared additively. For example, age – in 
fact, any variable measuring time – is an interval variable. We would not say that 
Michael’s age increased by 0.000002% (the multiplicative increase) in the time it 
took him to write that sentence above, but we would simply say that it increased 
by 44 seconds (the additive increase). Ratio variables are almost always nonnega-
tive and have a fi xed zero value: for example, biomass, concentration, length, 
euros and tonnage. Temperature, even though it does have an absolute zero, is 
an interval variable, unless you like to say that today is 2.6% hotter than yesterday 

Measurement scales

Categorical Continuous

Nominal Ordinal Ratio Interval

Count
Composition
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The myth of the normal 
distribution

(with respect to absolute zero) – we prefer to say that the temperature today has 
risen by 7 C compared to yesterday’s 20 C. 

Count data have a special place in the scheme of Exhibit 3.1, as they can be con-
sidered both ordinal and ratio. When 23 individuals of Galothowenia oculata are 
counted in a marine benthic sample, is that a continuous variable? We could not 
have counted a fraction of an individual, so this sounds like an ordinal categorical 
observation, but with many possible categories. On the other hand, in a survey of 
family sizes in Europe, we fi nd only a few values – 0, 1, 2, 3 and 4 children and a 
sprinkling of families with 5 or more. This sounds more ordinal categorical and 
less continuous than the Galothowenia oculata count. The truth is that they can be 
validly considered one or the other, depending on how many possible values are 
observable. If there are many possible values, as in the case of species abundance, 
then we tend to think of it as a ratio variable. Another aspect is whether we model 
the expected, or average, count, which is theoretically continuous: for example, 
at a given sampling location we might predict an average Galothowenia oculata 
abundance of 10.57, even though individual counts are, of course, integers. 

Finally, we have singled out compositional data as a special case – these are pro-
portions that add up to 1, a property called closure, or the unit-sum constraint. The 
compositional label applies to a set of variables, not to a single one, since it is 
the property of the set that gives it that nature. Compositional data are usually 
created from a set of counts or a set of ratio variables when their total is not as 
relevant as the composition formed by the parts. For example, when we count dif-
ferent species sampled at a particular site, it is likely that the total number is not 
so relevant, but rather the proportion that each species contributes to the overall 
count. But if the sampling sites were exactly the same size, as in quadrat sam-
pling in botany, then the overall counts would also be valid measures of overall 
abundance per unit area sampled. By contrast, a geochemist looking at a mineral 
sample is not concerned about the weight or volume of the particular sample but 
in the breakdown of that sample into its components. The situation is identical 
for fatty acid studies in biology where the data are inherently proportions or per-
centages, with the overall size of the material sampled having no relevance at all. 

One of the thorniest issues for applied researchers is that of the normal distribu-
tion – most would think that their data should be normal or close to normal in 
order to arrive at valid conclusions subsequently. This belief is mostly misguided, 
however, and is a myth created in idealized statistics courses that assume that 
everything is normally distributed and teach very little about nonparametric sta-
tistics, categorical data analysis and modern hypothesis testing using computer-
based algorithms such as permutation testing and bootstrapping (see Chapter 
17). In any case, it is important to distinguish between exploratory and confi rmatory 
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Logarithmic 
transformation 

of ratio data

data analysis. In data exploration, which is actually the theme of most of the pre-
sent book, we are considering methods to summarize and interpret large data 
sets, to give us an understanding of the information that we have painstakingly 
collected and to diagnose relationships between the observed variables. The 
normal distribution is a minor issue here, but outliers and standardization and 
transformations are major ones, which we deal with soon. In the second case of 
confi rmatory analysis, which we will touch on now and again in passing, data 
are assumed to be representative of a wider population and we want to make 
conclusions, called inferences, about that population. An example of an inference 
might be that a particular underlying gradient detected in the sample exists in 
the population with a high degree of probability, based on statistical hypothesis 
testing. Here we need to know the probabilistic characteristics of the population, 
and the assumption of normality is the easiest (and most studied) choice. There 
are, however, other solutions which do not depend on this assumption at all. 
But, having said this, the idea of data being approximately normally distributed, 
or at least symmetrically distributed, does have some advantages in exploratory 
analysis too. 

Most of the methods we use are what we call least-squares methods that were devel-
oped in the context of well-behaved normally distributed data. By “least squares” 
we mean that solutions are found by minimizing an error criterion defi ned as a 
sum of squared differences between our estimated (or “fi tted”) solution and the 
observed data. Even in our simple data set of Chapter 1 (Exhibit 1.1) we have 
seen that the variables are generally not symmetrically distributed around their 
means. The count variables in Exhibit 1.3, for example, show very skew distribu-
tions, with mostly low values and a few much higher ones. Data analysis with these 
variables, using standard least-squares procedures to fi t the models, will be sensi-
tive to the higher values, where the larger error in fi tting the high values is even 
larger when squared. There are several solutions to this problem: one is to use 
a different theory – for example, maximum likelihood rather than least squares 
– or make some transformation of the data to make the distributions more sym-
metric and closer to “well-behaved” normal. Another possibility, used often in the 
case of count data, is to introduce weights into the analysis, where rare or unu-
sual values are downweighted and contribute less to the results (for example, see 
Chapters 13 and 14 on correspondence analysis and log-ratio analysis).

Since most ratio variables are skew with long tails to the right, a very good 
all-purpose transformation is the logarithmic one. This not only pulls in the 
long tails but also converts multiplicative relationships to additive ones, since 
log(ab)log(a)log(b) – this is advantageous not only for interpretation but 
also because most of the methods we use involve addition and subtraction. The 
logarithmic function is shown in Exhibit 3.2 (the lowest curve) as well as other 
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Exhibit 3.2:
The natural logarithmic 
transformation x'log (x) 
and a few Box-Cox power 
transformations, for powers 
½ (square root), ¼ 
(double square root, or 
fourth root) and 0.05

functions that will be described in the next section. Notice how large values of the 
original variable a are pulled down by the log-transformation.

To illustrate the effect the log-transformation has on the interpretation of a 
variable, consider fi rst the simple linear additive relationship expressed in this 
equation between the average abundance of a certain marine species and the 
concentration of the heavy metal barium:

 abundanceC0.023 Ba (3.1)

where C is some constant. The interpretation is that abundance decreases 
on average by 0.023 per unit increase of barium (measured in ppm), or 2.3 
per 100 units increase in barium. Now consider another equation where 
abundance has been log-transformed using the natural logarithm (sometimes 
denoted by “ln”):

 log(abundance)C0.0017 Ba (3.2)

where C is another constant. A unit increase in Ba now decreases the logarithm 
of abundance on average by 0.0017. If we exponentiate both sides of equation 
(3.2), which is the inverse transformation of the natural logarithm, we obtain:

 abundancee (C0.0017 Ba)e Ce (0.0017 Ba) (3.3)
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Power transformations 
and Box-Cox

Dummy variables

That is, a unit increase in barium changes exp(0.0017 Ba) to exp(0.0017 
Ba1)exp(0.0017 Ba) · exp(0.0017). So the effect is that abundance is mul-
tiplied by exp(0.0017)0.9983, in other words a 0.17% decrease. For a 100 unit 
increase in barium, abundance is multiplied by exp(0.0017100)exp(0.17)
0.8437, a 15.63% decrease. Notice that this is not a 1000.17%17% de-
crease since the multiplicative effect is compounded (just like interest calcula-
tions in fi nance where the “capital” is being diminished). The above example 
shows how the logarithmic transformation converts an additive effect into a 
multiplicative one.

In Exhibit 3.2 three other curves are shown corresponding to power transforma-
tions of the variable x, called Box-Cox transformations after two of the most infl uen-
tial statisticians of the 20th century, the American George Box and the Englishman 
Sir David Cox. These are a slight modifi cation of a simple power transformation 
x  and take the following form:

 ′ = −x x1 1
λ

λ( )  (3.4)

The advantage of this form is that it tends to the log-transformation as the 
power parameter tends to 0, as shown in Exhibit 3.2 – as  decreases the curve 
a pproaches the logarithmic curve. The division by  conveniently keeps the scale 
of the original variable from collapsing: for example, if you take the 20th roots 
(that is, x 0.05) of a set of data, you will quickly see that all the values are close to 
1, so the division by 0.05, which multiplies the values by 20, restores them to an 
almost logarithmic scale.

Box-Cox transformations serve as a fl exible way of symmetrizing data and have 
found extensive application in regression analysis. The inverse transformation is:

 = + ′x x1
1
λλ( )  (3.5)

where x is the transformed value in (3.4). We shall refer to these transformations 
in Chapter 14 in our treatment of compositional data.

In functional methods of regression and classifi cation, there is no problem at 
all to have some continuous and some categorical predictors. The categorical 
variables are coded as dummy variables, which are variables that take on the val-
ues 0 or 1. For example, suppose one of the predictors is sampling region, with 
four regions. This variable is coded as four dummy variables which have values 
1 0 0 0 for region A, 0 1 0 0 for region B, 0 0 1 0 for region C and 
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Fuzzy coding

Exhibit 3.3:
Fuzzy coding of a continuous 
variable x into three 
categories, using triangular 
membership functions. 
The minimum, median and 
maximum are used as hinge 
points. An example is given 
of a value x* just below the 
median being fuzzy coded as 
[ 0.22 0.78 0 ]

0 0 0 1 for region D. For a technical reason only 3 out of these 4 dummies can 
be used – the statistical program usually does this all automatically, omitting (for 
example) the last dummy for region D. Then the results for the three included 
dummies are interpreted as the differences of those three regions compared to 
the omitted region. If the categorical variable has only two categories, for exam-
ple pelagic or littoral habitat, then only one dummy variable is included, omitting 
the one for littoral, for example, in which case the model estimates the effect 
of the difference between pelagic and littoral habitats. 

For structural methods, however, the situation is more complicated, because we 
are trying to explore structure amongst all the variables and here the coding 
does matter. We could resort to dummy variable coding of all the categorical 
variables but this is not satisfactory because of the inherently different vari-
ances in the dummy variables compared to the continuous ones. For example, 
a danger might exist that the dummy variables have much less variance than 
the continuous variables, so when we look for structure we only see patterns 
in the continuous variables while those in the categorical variables are more 
or less “invisible” to our investigation. We need to balance the contributions 
of the variables in some way that gives them all a fair chance of competing for 
our attention. This is a problem of standardization, which we treat in detail in a 
later section.

An alternative approach to the problem of mixed-scale data is to recode the con-
tinuous variables also as dummy variables, so that we put them on the same scale 
as the categorical dummies. This can be achieved by dividing up the continuous 
scale into intervals, for example three intervals which can be labelled “low”, “me-
dium” and “high”. Clearly, this loses a lot of information in the continuous vari-
ables, so there is a way to avoid data loss called fuzzy coding. If we again choose the 
three-category option, then a continuous variable can be fuzzy coded as shown 
in Exhibit 3.3.

1

0.78

0.5

0.22

0
Minimum x* Median Maximum

Fu
zz

y 
va

lu
es

Original variable x
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Standardization

In this example we have used the simplest procedure, triangular membership func-
tions, for fuzzy coding. For three categories we need three hinge points, which we 
have chosen to be the minimum, median and maximum of the continuous vari-
able x. Triangles are drawn as shown and these provide the fuzzy values for the 
three categories – notice that the third category, drawn in gray, has value zero 
below the median. The general algorithm for computing the three fuzzy values 
z1 z2 z3 is as follows:

 
x m

=
−
−

≤⎧
z x

m x
m m

x m
1

2

2 1
2( )
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0  otherwise
⎨⎨
⎪

⎩⎪

−
−
−
−

>
=z x

x m
m m

m x
m m

2

1

2 1

3

3 2

( )
,

,

0  otherwise

⎧

⎨
⎪
⎪

⎩
⎪
⎪

−
−

⎧
⎨
⎪

⎩⎪
=z x
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2
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,

,

≤x m2for

2for

x m> 2for

 (3.6)

where m1, m2 and m3 denote the three hinge points. For example, in Exhibit 3.3, 
the hinges were m13.69, m28.64 and m319.65. The value x* was 7.55 and 
was fuzzy coded as z1(7.55)(8.647.55)/(8.643.69)0.22; z2(7.55)
(7.553.69)/(8.643.69)0.78, and z3(7.55)0.

The advantage of this coding is that it is invertible – we can recover the original 
value from the fuzzy values as a linear combination of the hinge values (in fact, a 
weighted average since the fuzzy values add up to 1):

 xz1 m1z2 m2z3 m3 (3.7)

for example, 0.223.690.788.64019.657.55. This reverse process 
of going from the fuzzy values back to the original data is called defuzzifi cation. 
The fact that the fuzzy coding is reversible means that we have conserved all the 
information in the coded values, while gaining the advantage of converting the 
continuous variable to a form similar to the categorical dummies. However, there 
is still a problem of balancing the variances, which we now discuss. 

Standardization is an important issue in structural methods of multivariate analy-
sis. Variables on different scales have natural variances which depend mostly on 



41

MEASUREMENT SCALES, TRANSFORMATION AND STANDARDIZATION 

their scales. For example, suppose we measure the length of a dorsal fi n of a sam-
ple of fi sh in centimeters – the variance of our measurements across the sample 
might be 0.503 cm2, and the standard deviation 0.709 cm (the square root of the 
variance). Then we decide to express the lengths in millimeters, because most of 
the other measurements are in millimeters; so the variance is now 50.3 mm2, a 
hundred times the previous value, while the standard deviation is 7.09 mm, ten 
times more. The fact that some variables can have high variances just because of 
the chosen scale of measurement causes problems when we look for structure 
amongst the variables. The variables with high variance will dominate our search 
because they appear to contain more information, while those with low variance 
are swamped because of their small differences between values.

The answer is clearly to balance out the variances so that each variable can play 
an equal role in our analysis – this is exactly what standardization tries to achieve. 
The simplest form of standardization is to make all variances in the data set ex-
actly the same. For a bunch of continuous variables, for example, we would divide 
the values of each variable by its corresponding sample standard deviation so that 
each variable has variance (and also standard deviation) equal to 1. Often this 
is accompanied by centering the variable as well, that is, subtracting its mean, in 
which case we often refer to the standardized variable as a Z-score. This terminol-
ogy originates in the standardization of a normally distributed variable X, which 
after subtracting its mean and dividing by its standard deviation is customarily 
denoted by the letter Z and called a standard normal variable, with mean 0 and 
variance 1. 

Standardization can also be thought of as a form of weighting. That is, by dividing 
variables with large variances by their large standard deviations, we are actually 
multiplying them by small numbers and reducing their weight. The variables with 
small variances, on the other hand, are divided by smaller standard deviations 
and thus have their weight increased relative to the others.

Other forms of standardization are: 

  by the range: each variable is linearly transformed to lie between 0 and 1, where 
0 is its minimum and 1 its maximum value;

  by chosen percentiles: because the range is sensitive to outliers, we can “peg” 
the 0 and 1 values of the linearly transformed variable to, say, the 5th and 95th 
percentile of the sample distribution;

  by the mean: the values of a variable are divided by their mean, so that they 
have standard deviations equal to what is called their coeffi cient of variation. 
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SUMMARY:
Measurement scales, 

transformation and 
standardization

There are various forms of standardization which rely on the assumed theoreti-
cal characteristics of the variable. For example, count data are often assumed to 
come from a Poisson distribution. This distribution has the property that the 
variance is theoretically equal to the mean. Thus, dividing by the square root of 
the mean would be like dividing by the standard deviation (this is, in fact, the 
standardization inherent in correspondence analysis – see Chapter 13). Another 
theoretical result is that, while a Poisson variable has variance that increases as 
the average count increases, its square root has a variance tending to a constant 
value of ¼. Hence, an alternative form of standardization that is regularly used 
to “stabilize” the variance of count data is simply to square root transform them.

Finally, coming back to the handling of continuous and categorical variables 
jointly, where the continuous variables have been coded into fuzzy dummy 
variables and the categorical variables into “crisp” (zero-one) dummies, we could 
standardize by calculating the collective variance of each set of dummies corre-
sponding to one variable and then weighting the set accordingly. That is, we do 
not standardize individual dummy variables, which would be incorrect, but each 
group as a whole.

1.  Variables can be either categorical or continuous, although all measurements 
are categorical in the sense of being discretized. Continuous variables are 
those that have very many categories, for example a count variable, or are dis-
cretized versions of a variable which could, at least theoretically, be measured 
on a continuous scale, for example a length or a concentration.

2.  Categorical variables can be either ordinal or nominal, depending on whether 
the categories have an inherent ordering or not.

3.  Continuous variables can be either ratio or interval, depending on whether 
we compare two observations on that variable multiplicatively (as a ratio) or 
additively (as a difference).

4.  The logarithmic transformation is a very useful transformation for most posi-
tive ratio measurements, because multiplicative comparisons are converted to 
additive ones and because high values are pulled in, making the distribution 
of the variable more symmetric.

5.  Box-Cox transformations are a very fl exible class of power transformations 
which include the log-transformation as a limiting case.

6.  Categorical variables are usually coded as dummy variables in order to be able 
to judge the effect or relationship of individual categories.

7.  Continuous variables can also be dummy coded but this loses a lot of informa-
tion. A better option is to fuzzy code them into a small number of categories, 
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which allows continuous variables to be analysed together with categorical 
ones more easily, especially in the case of structural multivariate methods.

8.  In structural methods standardization is a major issue for consideration. Vari-
ances of the variables being analysed need to be balanced in some way that 
gives each variable a fair chance of being involved in the determination of 
the latent structure. Results should not depend on the scale of measurement. 
Standardization is not an issue for functional methods because the effect of a 
variable on a response is measured independently of the scale.
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