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Analysis of variance 
(ANOVA)

Chapter 

Ward Clustering and k-means Clustering

This chapter continues the theme of cluster analysis, fi rst with a popular alterna-
tive to the hierarchical clustering methods presented in Chapter 7 – Ward cluster-
ing. This method is based on the same concepts as analysis of variance (ANOVA), 
so we shall give a brief introduction to ANOVA, specifi cally to the defi nitions of 
between-group and within-group variance, to motivate Ward clustering. Exactly 
the same concepts are used in a different clustering algorithm called k-means 
clustering. This form of clustering, which is an example of “nonhierarchical” 
clustering, is particularly useful when a very large number of objects need to be 
clustered, where the dendrogram would be so big that it becomes too burden-
some to visualize and interpret. In this situation, all we really want is a partitioning 
of the objects into a set of groups. Nonhierarchical clustering algorithms such as 
k -means do not result in a dendrogram – the user specifi es in advance how many 
groups are being sought (the k of k -means) and the fi nal result is the allocation 
of each object to a group so that the groups are as internally homogeneous as 
possible. This measure of internal homogeneity is the same as in Ward clustering, 
hence our treatment of these two methods together in this chapter.
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To introduce the concepts inherent in Ward and nonhierarchical cluster-
ing, it is worthwhile to recall analysis of variance, abbreviated as ANOVA. 
ANOVA is concerned with testing the difference between means of a con-
tinuous variable observed in different groups. As an example, we can use 
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Exhibit 8.1:
Representation of the 30 

values of pollution (see 
Exhibit 1.1), coded for the 
three sediment types. The 

means (to one decimal 
place) of the three subsets 

of data are indicated, as 
well as the overall mean 
(compare this graphical 

representation with that of 
the middle plot of Exhibit 

1.5, where the medians and 
quartiles are displayed)

the continuous variable “pollution” and the categorical variable “sediment” 
from Exhibit 1.1, where sediment divides the sample into three groups: clay 
(11 sites), sand (11 sites) and gravel (8 sites). In the middle of Exhibit 1.5 
the box-and-whisker plot for pollution shows the medians of the three 
groups, or subsamples, and their dispersions between first and third quar-
tiles – here we shall be concerned with the means and variances in each sub-
sample. Exhibit 8.1 shows an alternative graphical display of the same data, 
where each value is shown on the pollution scale and is coded according to 
its respective sedimentary group. The means of each group are indicated as 
well as the mean pollution of all 30 sites. In ANOVA, the separateness of the 
three groups is measured by how far the means are away from the overall 
mean, taking into account the size of the groups, the so-called between-group 
sum of squares BSS:

 ∑n x xg
g

G

g
1

2BSS = −
=

( )  (8.1)

where Gnumber of groups, ngthe sample size in the g -th group,xg is the 
g -th group mean andx is the overall mean. In this particular case the calcula-
tion gives a value of BSS37.6. In isolation this value tells nothing about how 
separate the groups are, because if the three groups of points were more tightly 
dispersed about their respective means, we would get the same value of BSS 
even though the groups appear more separate. The dispersion of the observa-
tions around their respective group means thus needs to be taken into account, 
and this is calculated by the within-group sum of squares WSS:

 ∑∑
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Looking for the optimal 
solution

which in this example is equal to WSS95.4. The beauty of using sums of squares 
is that BSS and WSS add up to the total sum of squares, TSS:

 ∑∑
g

G

1= i

ng

1=
xigTSS −= ( xx )2  (8.3)

that is, 

  BSSWSSTSS (8.4)

in this case: 37.695.4133.0. TSS in (8.3) is the sum of squared deviations 
of all the observations from the overall mean, which measures the dispersion of 
all the data points around the overall mean. WSS in (8.2), on the other hand, is 
measuring the dispersion of the observations in the groups around their own 
respective group means, so WSS must be less than TSS. Notice that TSS divided 
by n1 ( 29) is the usual sample variance (of all the observations), while each 
of the G summations in (8.2), divided by its respective ng1, is the variance of the 
g -th group. Furthermore, (8.1) divided by G1 is the variance of the G3 means 
weighted by their respective group sizes. The term analysis of variance derives from 
the fact that (8.4) implies this decomposition of variance into parts between and 
within the groups. In order to test whether there is signifi cant separation of the 
groups, or whether the observed separation is compatible with random variation 
in the data, the values of BSS and WSS are combined into the classic F -statistic.1 
This F -test gives a p -value of 0.0112, indicating signifi cant differences between the 
sediment groups in terms of pollution. We could also perform a permutation test, 
to be described in Chapter 17, which estimates the p -value as 0.0106, very close 
to that of the F -test. 

In ANOVA the grouping variable is prescribed (sediment type in the above ex-
ample), but in cluster analysis we are looking for a grouping variable in the data. 
In the one-dimensional example of Exhibit 8.1, suppose we have no classifi cation 
of the 30 values, what would be the optimal clustering of the data into three 
groups? Optimality could be defi ned as maximizing the ratio BSS/TSS, which is 
equivalent to optimizing any increasing function of that ratio, for example BSS 
itself (since TSS is fi xed), or BSS/WSS, or the F -statistic defi ned in the footnote. 
Because there is only one variable and a fairly small sample size, we can investi-
gate every pair of cutpoints that separates the data set into three groups (clearly, 

1 The classical test in ANOVA for testing differences between means is the F -test, where F BSS G
WSS n G

( )
( )

1= −
−

 has the

F -distribution with G1 and nG “degrees of freedom”. The observed value F(37.6/2)/(95.4/27)5.32 
has an associated p -value of 0.0112, which is very close to the p -value of 0.0106 of the permutation test.
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Ward clustering in one 
dimension

Exhibit 8.2:
Ward clustering of the 
30 sites in Exhibit 1.1 

according to the single 
variable “pollution”, 

showing the cutpoint 
for a 3-cluster solution 

(partitioning of 9; 14 and 
7 values, shown by vertical 

dashed lines), with between-
to-total sum of squares 

ratio, BSS/TSS0.825. The 
sites are labelled by their 
pollution values. The curly 
brackets show the globally 
optimal 3-cluster solution 

(partitioning of 14; 13 and 
3 values) for which 

BSS/TSS0.867

for maximal separation of the three groups, each group is defi ned as a contiguous 
interval on the pollution scale). There are 2928/2406 pairs of cutpoints, and 
the maximum BSS/TSS turns out to be 0.867 obtained when the three groups 
are defi ned as (i) the fi rst 14 values; (ii) the next 13 values; (iii) the last 3 values, 
as shown in green in the lower part of Exhibit 8.2. This exhaustive way of looking 
for a given number of clusters is actually the nonhierarchical clustering treated 
in a later section, but we do it here to contrast with Ward clustering, which is the 
hierarchical version of this search.

Ward clustering also tries to maximize BSS (or, equivalently, minimize WSS) 
but does it at each step of a hierarchical clustering like the ones described in 
Chapter 7. So we start with single objects and look for the pair that are the 
“closest”, in terms of keeping the WSS as small as possible (and thus the BSS 
as large as possible), and proceed stepwise in this way until a dendrogram 
is constructed. Exhibit 8.2 shows the dendrogram constructed by Ward clus-
tering, and the associated three-cluster solution using a cutting of the tree 
at about level 10, giving clusters of 9, 14 and 7 sites. Notice that the Ward 
procedure does not necessarily find the optimal solution – this is because 
the hierarchical clustering is stepwise and every merging of clusters depends 
on what has happened previously. For example, the values 6.0; 6.4; 6.5 and 
6.7 join the smaller cluster on the right formed by the three top values 8.2; 
9.4 and 10.0, whereas in the optimal solution these three top values form a 
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Ward clustering in 
several dimensions

Exhibit 8.3:
Ward clustering of the 
30 sites in Exhibit 1.1 
according to the three 
variables depth, pollution 
and temperature, using 
standardized Euclidean 
distances (Exhibit 4.5). Cuts 
are shown which give three 
and four clusters

cluster alone. The Ward clustering solution, with BSS/TSS0.825, is actually 
quite far from the optimal partitioning of the 30 sites, where BSS/TSS0.867, 
computed above.

The type of exhaustive search that we could do above in one dimension, 
looking at all possible cutpoints, becomes much more diffi cult when the data 
are multidimensional: for example, for the three-dimensional (continuous) 
environmental data of Exhibit 1.1, we would have to consider all pairs of 
planes dividing the sample into three subsamples. Hierarchical Ward cluster-
ing, however, is still very simple to execute, even though it is unlikely to fi nd 
the optimal solution. The algorithm proceeds in the same way as for the uni-
dimensional case, with the BSS and TSS measures using squared distances in 
multidimensional space, which are the natural generalizations of the squared 
differences in one dimension. For example, BSS in (8.1) becomes, in the 
multidimensional version: 

 ∑
g

G

1=
n dg g( , )2=BSS x x  (8.5)

where gx  and x are now the g -th mean vector and overall mean vector, respec-
tively. When there are more than one variable, then the issue of standardization 
becomes important when defi ning the distance, as explained in Chapter 4. Ex-
hibit 8.3 shows the Ward clustering of the 30 samples based on Euclidean distance 
using the three standardized variables (depth, pollution and temperature) – part 
of the distance matrix has been given in Exhibit 4.5.
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Comparing cluster 
solutions

Nonhierarchical 
clustering by k -means

Notice how different this result is in appearance from the complete linkage clus-
tering of Exhibit 7.10, although on the left in both dendrograms we can see that 
the cluster of three sites (s13,s4,s10) corresponding to the three highest pollu-
tion values remains a separate cluster in both analyses. In the next section we shall 
show that the cluster solutions are, in fact, very similar. We can again perform a 
permutation test for clusteredness, to be described more fully in Chapter 17. For 
example, for the four-cluster solution, the permutation test estimates a p -value of 
0.465, so there is no evidence of clustering in these data, and the analysis simply 
serves to partition the sites into four groups in their three-dimensional spatial 
continuum.

One cluster analysis, which yields p clusters, can be compared to another 
cluster analysis on the same data, giving q clusters, by cross-tabulating the cat-
egories from the two solutions. For example, let us compare the four-category 
complete linkage solution from Exhibit 7.10 (p4) with the four-cluster Ward 
solution from Exhibit 8.3 (q4), leading to the following cross-tabulation of 
the 30 sites:

Ward clustering

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Complete 
linkage 
clustering

Cluster 1 2  0 11 0

Cluster 2 0 10  0 0

Cluster 3 0  0  0 3

Cluster 4 4  0  0 0

Apart from the two sites in the fi rst cell of the table, all the sites fall into the same 
clusters in both solutions – the two solutions would agree perfectly if these two 
(identifi ed as sites s1 and s9) were either in cluster 4 of the complete linkage so-
lution, or in cluster 3 of the Ward solution. There are several ways to measure the 
agreement between the two solutions, as summarized in such a cross-tabulation; 
for example, Cramer’s V statistic given in (6.3) – which is equal to 1 for perfect 
agreement, is equal to 0.925 in this example.

Instead of constructing a dendrogram, nonhierarchical clustering searches for 
a prescribed number of clusters in the data. We shall describe the most popular 
of the nonhierarchical algorithms, called k-means clustering. The k refers to the 
specifi ed number of groups we are looking for in the data set, and means refers to 
the fact that in each iteration of the algorithm objects are allocated to the closest 
group mean. The k -means algorithm proceeds as follows, where n objects need to 
be clustered into k groups, and we have a distance function between any pair of 
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objects (which should be of the Euclidean type, weighted or unweighted, for the 
decomposition (8.4) to be valid):

1.  Choose k objects at random as starting seeds; or use k prespecifi ed objects as 
seeds. 

2.  Calculate the distances of all n objects to the k seeds, and allocate each object 
to its closest seed – this gives a fi rst clustering of the objects into k groups.

3.  Calculate the means of the k clusters, used as seeds for the next iteration.

4.  Repeat steps 2. and 3. until convergence, that is when there is no change in 
the group allocation from one iteration to the next.

It can be proved that when the distance function is of the Euclidean type, option-
ally weighted, then the value of the between-groups sum of squares (BSS) must 
increase from one iteration to the next. Since BSS cannot be higher than TSS, 
the algorithm must converge, but there is no guarantee that the convergence is 
at the global optimum – we say that the algorithm converges at a local optimum, 
which could be the global one, we simply do not know. 

The k -means algorithm is very fast and is generally used for very large data sets, 
typically found in the social sciences, for example looking for clusters of attitudes 
in a political survey of thousands of people. If a large ecological data set is en-
countered, this is a way to fi nd some simple structure in the sample units. In the 
clustering of the 30 sites described previously, in terms of the single variable pol-
lution, we did know the global optimum (BSS/TSS0.867, which is the highest 
possible value for this example – see Exhibit 8.2) because we could do an exhaus-
tive search of all three-cluster solutions. We already saw that Ward clustering gave 
a nonoptimal solution, with BSS/TSS0.825. Even though k -means is usually 
used for much bigger data sets and many variables, we applied it to the same 
example, specifying three clusters as before. The result was BSS/TSS0.845, 
which is an improvement over the hierarchical clustering solution, but still not 
the global optimum. In k -means clustering the starting set of seeds is quite crucial 
to the result – unless we have some prior information on what constitutes good 
seeds to start growing clusters, the initial seeds are chosen randomly. So it is rec-
ommended to use several random sets of starting seeds and then take the best 
result. When we repeated k -means clustering using 10 different random starts, we 
did indeed fi nd the optimal solution with BSS/TSS0.867.

Similarly, we can compare the k -means result, after several random starts, with 
the Ward clustering on the three-dimensional data. The four-cluster solution 
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Weighting the objects 
in Ward and k -means 

clustering

SUMMARY:
Ward clustering and 
k -means clustering

obtained in the latter result, shown in Exhibit 8.3, gives a BSS/TSS ratio of 0.637. 
The best k -means solution, after 10 random starts, has an improved BSS/TSS 
equal to 0.648. So it seems, just after these few examples, that if one is interested 
in obtaining only a partition of the objects, then k -means clustering with several 
random starts does perform better than hierarchical Ward clustering. It does no 
harm, however, to do both and check which gives the better solution.

The central concepts of Ward and k -means clustering are the measures BSS, WSS 
and TSS, where the objective is to maximize BSS, or equivalently minimize WSS 
because they add up to TSS, which is a constant. In the defi nitions (8.1), (8.2) 
and (8.3) of these measures, each object is counted, or weighted, equally. But in 
some situations (we shall see one of these when we treat correspondence analysis) 
we would like to count some objects differently from others, that is weight the 
objects differentially. If w1, w2, …, wn denote positive weights assigned to the n 
objects, then (8.1)(8.3) can be generalized as:

 ∑
g

G

1=
BSSS = −w x xg g

2( )  (8.6)

where wg is the total weight of the objects in the g -th group: w w∑
i

ng

1=
.=g i

 ∑∑
g

G

1= i

ng

1=
WSS −= w x xi ig

2( )g  (8.7)

 ∑∑
g

G

1= i

ng

1=
TSS == −w x xi ig( )2  (8.8)

The equally weighted versions used before are thus a simple case when wi1. 
The multidimensional equivalents – for example, BSS in (8.5) – are generalized 
in a similar fashion. 

1.  Ward clustering is a hierarchical cluster analysis where the criterion for merg-
ing two clusters at each node of the tree is to maximize the separation of the 
new cluster’s mean from the means of the other clusters. The separation be-
tween clusters is measured by the between-group sum of squares (BSS). 

2.  Equivalently, the criterion is based on minimizing the dispersion within the 
newly combined cluster. The dispersion within clusters is measured by the 
within-group sum of squares (WSS). 

3.  BSS and WSS sum to a constant, the total sum of squares (TSS). Thus, maxi-
mization of BSS is equivalent to minimization of WSS.
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4.  k -means clustering is a nonhierarchical cluster analysis based on exactly the 
same criteria as Ward clustering, with the difference that a solution is sought 
by an iterative procedure which successively allocates the set of observations to 
a set of k seeds, where k is the number of clusters specifi ed by the user.

5.  The initial seeds are k observations randomly chosen, or specifi ed by the user, 
from which the algorithm can start to allocate observations to their nearest 
seed, providing a fi rst clustering of the observations. Mean points in each 
cluster are calculated, which provide the seeds for the next iteration, and this 
process is repeated until there is no change in the clustering from one itera-
tion to the next.

6.  If interest is just in fi nding a set of clusters rather than visualizing the complete 
clustering process, then k -means clustering seems to fi nd better solutions, but 
the analysis should be repeated several times with different random sets of 
initial seeds.

7.  Both Ward clustering and k -means can be generalized to include observation 
weights, which give observations varying importance in the cluster analysis.
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