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A simple exact distance 
matrix

Chapter 

Multidimensional Scaling

In Chapter 7 a square matrix of distances or dissimilarities was visualized in the 
form of a dendrogram, trying to establish groups of points with relatively small 
within-group distances but relatively large between-group distances. Samples are 
not usually clustered naturally but are more often spread around continuously in 
the multidimensional space of the variables. Strongly correlated variables imply 
a certain amount of redundancy in the data, which means that less dimensions 
than the number of variables are required to describe the sample positions. 
Multidimensional scaling (MDS) is an alternative way of visualizing a distance 
or dissimilarity matrix, with the objective of representing the samples in a low-
dimensional space, usually two- or three-dimensional, reproducing as closely as 
possible the inter-sample proximities (either distances or dissimilarities). The 
method is thus attempting to make a spatial map of the data to facilitate interpre-
tation of the positions of the samples relative to one another. Since our intuitive 
understanding of a map is through the physical concept of a Euclidean distance, 
it will be an issue whether the sample proximities are Euclidean or not. Usually 
Euclidean-type distances will be mapped by so-called metric scaling methods, for 
example classical (metric) MDS, while non-Euclidean ones will be mapped by 
nonmetric methods.
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To introduce how MDS works in a simple way, consider the following matrix D of 
distances between fi ve samples, numbered s1 to s5:

9
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Exhibit 9.1:
Classical multidimensional 

scaling solution in 
two dimensions of the 

matrix D, using the R 
function cmdscale
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s1 s2 s3 s4 s5

s1 0 4.24 13.23 9.33 10.58

s2 4.24 0 9.11 7.94 11.05

D  s3 13.23 9.11 0 9.59 14.39

s4 9.33 7.94 9.59 0 4.80

s5 10.58 11.05 14.39 4.80 0

 (9.1)

First, we do not have an immediate way of telling whether this is a true distance 
matrix, but we can easily check the fi rst two properties of a distance see the 
properties in (5.1), so at least we know that this is a dissimilarity matrix. A more 
laborious exercise would be to go through all triplets of samples (and there are 
10 of these) to satisfy ourselves that the triangular inequality is indeed satisfi ed, 
for example, for samples s1, s2 and s3, with inter-sample values of 4.24; 13.23 
and 9.11, the sum of any two is always greater than the third. In fact, we will see 
now that these fi ve samples can be perfectly displayed in a two-dimensional map, 
reproducing exactly the above distance matrix.

Performing a so-called classical MDS (to be explained below) on the matrix D, the 
following map of the fi ve samples in Exhibit 9.1 is obtained.
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Classical MDS

It can be verifi ed that the distances between the samples are exactly those 
in the distance matrix D. Putting this another way, if we were given the co-
ordinates of the fi ve points in Exhibit 9.1 we could quite easily compute the 
distance matrix D, but MDS does the reverse, it starts with a distance matrix 
and constructs the map. The output of the MDS analysis is (1) the set of co-
ordinates of the points i on each of the dimensions k of the solution, which 
we denote by fi k, gathered in a matrix F; and (2) the parts of variance on each 
dimension, denoted by k for the k -th dimension. For this example here are 
those results:
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dim1 dim2

s1 1.618 −6.042

s2 −1.955 −3.755

F  s3 −7.880 3.166

s4 1.711 3.285

s5 6.506 3.345

dim1 dim2

[1 2] = [11.380 8.260]
 (9.2)

Computing the Euclidean distances between the rows of F will lead to exactly the 
same matrix of distances in D.

The classical MDS procedure used to pass from the distance matrix D to 
the map in Exhibit 9.1 works as follows. For n points, the maximum di-
mensionality is one less, n1. For example, two points lie on a line (one-
dimensional), three points lie in a plane (two-dimensional), but the three 
points could also lie on a line and be one-dimensional, and so on. In their 
(n1)dimensional space, using an eigenvalue-eigenvector routine, we 
can identify the principal dimensions of the set of points, in descending 
order of importance. This order is determined by the eigenvalues, with 
the highest eigenvalue and associated eigenvector indicating dimension 
1, the second dimension 2 and so on. In fact, the eigenvalues quantify 
the variance explained by each dimension. In the above example of five 
points, the dimensionality is at most 4, but it turns out that the third and 
fourth eigenvalues are zero, which means that the points are exactly two-
dimensional. The total variance of the points, that is the quantification 
of their dispersion in the two-dimensional space, is the sum of the two 
eigenvalues, 11.388.2619.64, with the first dimension accounting for 
11.38/19.640.579, or 57.9%, of the total, and the second dimension the 
remaining 42.1%.
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In practice: more 
complex proximity 

matrices

Exhibit 9.2:
Classical multidimensional 

scaling solution in two 
dimensions of the matrix 

of chi-square distances of 
Exhibit 4.7. The percentages 
of variance on the horizontal 
and vertical axes are 52.4% 

and 22.0% respectively

From now on we shall often call distance and dissimilarity matrices collectively 
as proximity matrices, and distinguish between them where necessary. In prac-
tice, you will never have a proximity matrix that is so simple as to be exactly 
two-dimensional. Let’s take two examples of matrices we have encountered 
already, fi rst the matrix of chi-square distances between the 30 samples in 
Chapter 4 – see Exhibit 4.7. Applying classical MDS to this matrix, the follow-
ing eigenvalues are obtained: 12.37; 5.20; 3.83; 2.23, and all the remaining 
ones are zeros. This indicates that the distances are four-dimensional,1 while 
in theory they could have any dimensionality up to 29. Exhibit 9.2 shows the 
MDS map of the chi-square distances between the 30 samples with respect to 
the fi rst two dimensions. According to the eigenvalues, the total variance is 
12.375.203.832.2323.63, of which 12.37/23.37, or 52.4%, is accounted 
for by dimension 1 and 5.20/23.63, or 22.0%, is accounted for by dimension 
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1 The chi-square distances were computed on only fi ve abundance values per sample, and Euclidean-type dis-
tances in this situation would usually be of dimensionality 5. So then why is the dimensionality equal to 4? This 
is because the chi-square distances are based on the relative abundances and since the relative abundances for 
each sample always add up to fi xed value, 1, only four values are free and the fi fth is one minus the sum of the 
other four. This is one of the properties inherent in correspondence analysis, treated in Chapter 13.
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2, totalling 74.4% for the map as a whole. It can be seen in Exhibit 9.2 that 
the fi rst dimension shows more variance than the second.

Exhibit 9.2 is an approximate display of the matrix of chi-square distances, but 
it is the best one can do in a two-dimensional display according to the optimi-
zation criterion inherent in classical scaling, namely to maximize explained 
distance variance. Each dimension of the display can be thought of as a vari-
able trying to explain the variance in the distance matrix, like independent 
variables in a regression. These dimensions are uncorrelated, so their separate 
percentages of variance can be simply added to give the cumulative percent-
age of variance explained for by the set of dimensions. Hence, the percentage 
74.4% of variance explained can be interpreted just like an R 2 in regression 
analysis.

Now as a second example we apply the same procedure to the matrix of Jacca-
rd proximity values in Exhibit 7.1 between seven samples, which in theory has 
a dimensionality no higher than 6. The eigenvalues that emerge are: 0.786; 
0.452; 0.148; 0.037; 0.000; 0.002; 0.030. Indeed, six of them are nonzero, 
but there are two negative eigenvalues, indicating that this proximity matrix 
is not Euclidean (hence the inclusion of the Jaccard index in Chapter 5 on 
non-Euclidean dissimilarity functions). So in this case it is impossible to rep-
resent these proximities in any Euclidean space, and the negative eigenvalues 
give an idea of how much of the variance cannot be displayed. The part that 
is Euclidean is the sum of the positive eigenvalues: 0.7860.4520.148
0.0371.423, while the part that cannot be displayed is the sum of the abso-
lute values of the negative eigenvalues: 0.0020.0300.032, which is quite 
small compared to 1.423. Exhibit 9.3 shows the classical MDS display in two 
dimensions of the samples.

Before interpreting this display, how do we quantify the variance explained 
in this case? There are two ways to do it, depending on whether the non-
Euclidean part is included in the total variance or not. The fi rst two eigen-
values, 0.786 and 0.452, can be expressed relative to the sum of the positive 
eigenvalues, 1.423, or the sum of the absolute values of all the eigenvalues, 
1.4230.0321.455. In the former case the percentages would be 56.5% 
and 32.5%, totalling 89.0%, while in the latter case they would be slightly 
lower, 55.3% and 31.8%, totalling 87.1%. The non-Euclidean part is quite 
small in this case, hence the small differences between the two options. 
An acceptable way of reporting the results would be to say that 2.1% (i.e., 
0.032/1.4550.021) of the total variance, is non-Euclidean, and that, of the 
Euclidean part of the variance, 89.0% (i.e., (0.7860.452)/1.4230.890) is 
displayed in Exhibit 9.3.
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Exhibit 9.3:
Classical multidimensional 

scaling solution in two 
dimensions of the matrix of 

Jaccard dissimilarities of 
Exhibit 7.1.The percentages 

of variance on the horizontal 
and vertical axes are 56.5% 

and 32.5% respectively 
(expressed relative to the 

four-dimensional Euclidean 
part of the variance)

Nonmetric MDS

Comparing the MDS map in Exhibit 9.3 with the dendrogram in Exhibit 7.8, 
the separation of the groups {B,F}, {A,C,E,G} and {D} is verifi ed here. The only 
noticeable difference between the two results is that in the clustering A was 
joined with E and C with G before they all joined together in a cluster of four, 
whereas in Exhibit 9.3 C and E look like they should have been clustered fi rst. 
This is because C and E are, in fact, quite far apart in the third dimension, with 
coordinates of 0.24 and 0.18 respectively. This large difference in the third 
dimension can not be seen in Exhibit 9.3 but the original data in Exhibit 7.1 
show C indeed further from E compared to the dissimilarity between A and E 
or C and G. 

The type of MDS described above is included in the family of metric MDS meth-
ods, since the observed proximities are accepted as quantitative measures of 
difference between the samples, and the error in the solution is quantifi ed by 
calculating actual differences between the observed values and those that are 
displayed in the solution map. Especially when it is known that the proximity ma-
trix is non-Euclidean, an alternative form of MDS may be used, called nonmetric 
MDS, which has a more relaxed way of measuring the quality of the solution. In 
nonmetric MDS we are not interested in reproducing the proximities themselves, 
but rather their ordering, that is if we sorted all the observed proximities from 
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Exhibit 9.4:
Ordering of the original 
Jaccard dissimilarities, 
from lowest to highest, and 
ordering of the interpoint 
distances in the metric MDS 
of Exhibit 9.3

smallest to largest, and we did the same for all the interpoint distances in the 
solution, then a perfect solution would be if the two orderings were identical. In 
the matrix of Jaccard dissimilarities of Exhibit 7.1 there are ½7621 values, 
ordered in the fi rst set of columns of Exhibit 9.4 (notice the tied ranks). In the 
second set of columns, the distances between points in Exhibit 9.3 are ordered 
(there are usually no tied ranks in such fi tted distances). Corresponding pairs of 
samples are linked: if all these links were horizontal, then the distances would be 
perfectly in order.

The objective of nonmetric MDS would be to get a better correspondence in the 
orderings of the points. The result for this small data set is surprising, because of 
the inherent clustering of the samples, shown in Exhibit 9.5.

A comparison of the observed and fitted distances in Exhibits 9.3 and 9.5 
clarifies what has happened – see the two plots in Exhibit 9.6. The objective 
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Exhibit 9.5:
Nonmetric MDS of the 

Jaccard dissimilarities of 
Exhibit 7.1. The samples 

agglomerate into three 
groups, identical to the 
clustering in Exhibit 7.8

of the nonmetric MDS is to find a configuration of the points such that the 
interpoint distances are close to the ordering of the original distances. In 
each plot a monotonically increasing function is shown (i.e., a function that 
never decreases) which best fits the interpoint distances in the map – this 
function is obtained by a procedure called monotonic regression. The error 
is quantified by the sum of squared deviations between the fitted distances 
(green circles) and the monotonic regression line. If the sequence of fitted 
points were always ascending then the monotonic regression line would sim-
ply join the points and the error would be zero. Clearly, the upper plot of 
Exhibit 9.6 shows that there are relatively large deviations of the points from 
the best-fitting monotonic regression line compared to the near zero devia-
tions in the lower plot. In the lower plot it looks like a perfect fit, but the 
enlargement of the first seven points shows that there are indeed very small 
deviations). To explain what has happened there, notice that the interpoint 
distances between B and F and among all pairs of points in the set {A,C,E,G} 
are the smallest in the original dissimilarity matrix. Hence, the nonmetric 
approach puts them all at near-zero distance from one another, and all their 
values can thereby be reduced to near zero. This maintains their ordering, 
with very little error from a monotonically increasing relationship, as shown 
in the enlargement.
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Exhibit 9.6:
The horizontal axis shows 
the observed dissimilarities 
from Exhibit 7.1, and 
the vertical axes show 
the fitted interpoint 
distances from Exhibits 
9.3 and 9.5 respectively. 
In both plots the closest 
fitting monotonically 
increasing function is 
shown. The vertical scale 
of the first seven points 
in the nonmetric MDS (see 
lower plot) is expanded 
considerably to show the 
small lack of fit for those 
points
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Adding variables 
to MDS maps

MDS of Bray-Curtis 
dissimilarities

The actual measure of error in a nonmetric MDS is a normalized version of the 
sum of squared errors, called stress. The most popular one is known as Kruskal’s 
stress formula 1:

 ∑
∑ d d

d

ij iji j

iji j

2

2
=

−⎛

⎝
<

<

stress
( )⎜⎜⎜

⎞

⎠
⎟⎟

1 2/

ˆ
 (9.1)

where dij is the distance between points i and j in the MDS map and dij
ˆ  is the cor-

responding value on the monotonic regression line (hence the values dij
ˆ dij are 

the vertical discrepancies between points and the line in Exhibit 9.6). This stress 
measure is often multiplied by 100 and considered as a percentage error: using 
this convention the metric MDS in Exhibit 9.3 would have a stress of 8.3% while 
the nonmetric MDS in Exhibit 9.5 would have a stress near zero equal to 0.008% 
(very low stress values are typical for small data sets like this one – later we will 
show the result for a larger data set).

The MDS maps in Exhibits 9.3 and 9.5 show the samples only, but the Jaccard 
dissimilarity matrix was constructed on a samples-by-species data matrix (Ex-
hibit 5.6). Since this is simple presence-absence data, the species can be shown 
in the MDS maps at positions near the samples that contain them. Usually, they 
would be situated at the average spatial position of the corresponding samples, 
shown in Exhibit 9.7 for the two MDS maps. For example, species sp6 is present in 
samples D and G, so is at an average position halfway between them, while species 
sp4 is present in samples B, D and F, and is thus positioned at an average position 
of these three samples.

In Chapter 5 we computed the Bray-Curtis dissimilarities between 30 samples, s1 
to s30, based on the abundances of fi ve species, a to e – see Exhibit 5.2, where 
we also pointed out that this measure violated the triangle inequality and was 
therefore not a metric. For this reason, nonmetric MDS is usually used to map 
Bray-Curtis indices, but fi rst let us see how metric MDS would handle the display 
of Exhibit 5.2. The maximum dimensionality of this set of 30 samples is 29, and, 
as expected, we obtain several negative eigenvalues in the classical MDS: in fact, 
14 eigenvalues are positive, with a sum of 57,729, while 15 are negative, with a sum 
of absolute values equal to 8,176 (Exhibit 9.8). This latter amount quantifi es how 
much variance is impossible to display in a Euclidean space. The fi rst two eigen-
values are 19,102 and 14,825, so the variance explained by the two-dimensional 
solution, relative to the Euclidean part, is (19,10214,825)/57,729, or 58.8%, 
that is an error of 41.2%. Computing the stress on this solution, however, gives a 
value of 16.3%, showing again that the stress criterion always appears more opti-
mistic than the explained variance one.
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Exhibit 9.7:
The MDS maps of Exhibits 
9.3 and 9.5 with the species 
added at the average 
positions of the samples 
that contain them
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Exhibit 9.8:
The eigenvalues in the 

classical MDS of the Bray-
Curtis dissimilarity indices 

of Exhibit 5.2, showing 
positive eigenvalues in 

green and negative ones 
in brown

Adding count variables 
to MDS maps

Performing nonmetric MDS on the same data gives a stress value of 13.5%, which 
is not a big improvement on the 16.3%, suggesting that the two resulting maps 
will not be as different as we found for the smaller data set of Jaccard indices. This 
is indeed the case, as shown by the quite similar maps in Exhibit 9.9.

In our experience, when there is a large number of samples (and by “large” we 
mean, as most statisticians do, 30 or more, as in this example), the metric and 
nonmetric approaches generally agree in their solutions. Where they disagree is 
in the quantifi cation of the success of their results, with the stress measure always 
giving a more optimistic value because it does not measure the recovery of the 
proximities themselves, but their ordering in the map.

The maps in Exhibit 9.9 emanate originally from abundance data on fi ve species, 
so the question now is how to include these species on the map. We shall consider 
alternative ways of doing this in future chapters, but for the moment let us use the 
same approach as in Exhibit 9.7 when the species were positioned at the averages 
of the samples that contained them. The difference here is that we have abun-
dance counts for the species across the samples, so what we can do is to position 
each species at their weighted average across the samples. For example, species a 
has abundances of 0, 26, 0, 0, 13, etc., and a total abundance of 02600
13...404, so the position of a is at a weighted average position of the 30 spe-
cies, with weights 26/4040.064 on sample s2, 13/4040.032 on sample s5, and 
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Exhibit 9.9:
Classical MDS map (upper) 
and nonmetric MDS map 
(lower) of the Bray-Curtis 
dissimilarities of Exhibit 5.2
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Exhibit 9.10:
Nonmetric MDS solution 

(right hand map in Exhibit 
9.9) with species a to 
e added by weighted 

averaging of sample points, 
and sediment types C, S 

and G by averaging

SUMMARY:
Multidimensional scaling

so on. Exhibit 9.10 shows the species positions on the nonmetric MDS solution, 
showing, for example, that species a and b are relatively more abundant in the 
samples at lower left, while c is more associated with samples on the right. Simi-
larly, even though the ordinal sediment types C (clay), S (sand) and G (gravel) 
have not been used in the mapping, they can be depicted at the averages of the 
subsets of samples corresponding to them. The samples thus appear to follow a 
trend from top right (more clay) to bottom left (more gravel).

1.  Multidimensional scaling (MDS) is a method that attempts to make a spatial 
map of a matrix of proximities, either distances or dissimilarities defi ned be-
tween sample units, so that the interpoint distances in the map come as close 
as possible to the given proximities according to the chosen fi t criterion. 

2.  The fi t criterion in metric MDS involves approximating the actual proximity 
values by the mapped distances, for example by least-squares.
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3.  Classical MDS is a particular form of metric MDS that relies on the eigenvalue-
eigenvector decomposition of a square matrix. The eigenvalues give conveni-
ent measures of variance explained on each axis, and the dimensions of the 
solution are uncorrelated.

4.  Nonmetric MDS has a more relaxed fi t criterion in that it strives to match only 
the ordering of the proximities to the ordering of the mapped distances. 

5.  The error in classical MDS is quantifi ed by the percentage of unexplained vari-
ance, while in nonmetric MDS the error is quantifi ed by the stress.

6.  The stress measure always gives a more optimistic result, because of the relaxa-
tion of approximating the proximity values in the map in favour of their rank 
ordering.

7.  In most cases, however, when the size of the proximity data matrix is quite 
large, say for at least 30 sample units, the results of the two approaches will be 
essentially the same.

8.  When the proximities are of a Euclidean type, it will be more useful to use the 
metric scaling approach because of the connection with methods such as prin-
cipal component analysis (Chapter 12) and correspondence analysis (Chapter 
13). There would be little advantage, for example, in applying nonmetric scal-
ing to a matrix of chi-square distances.

9.  When the proximities are non-Euclidean, the nonmetric approach avoids the 
dilemma that the triangle inequality is violated by concentrating on ordering 
of proximities rather than their actual values.
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